首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn?>?Cu?>?Pb?>?Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to T?u?ii de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.  相似文献   

2.
Heavy metal concentrations (Pb, Cd, and Cu) in classroom indoor dust were measured. The health risk (non-carcinogenic) of these heavy metals in classroom indoor dust to children was assessed based on United States Environmental Protection Agency health risk model. Indoor classroom dust samples were collected from 21 locations including windows, fans, and floors at a primary school in Sri Serdang, Malaysia. Classroom dust samples were processed using aqua regia method and analyzed for Pb, Cd, and Cu concentrations. The highest average heavy metal concentrations were found in windows, followed by floor and fan. Pb concentrations ranged from 34.17 μg/g to 101.87 μg/g, Cd concentrations ranged from 1.73 μg/g to 7.5 μg/g, and Cu concentrations ranged from 20.27 μg/g to 82.13 μg/g. Ventilation and cleaning process were found as the possible factors that contributed to heavy metal concentration in window, floor, and fan. Moreover, the hazard index (HI) and hazard quotient (HQ) values for heavy metals Cd and Cu were less than one. By contrast, the HI and HQ values for Pb (maximum values) were more than one, indicating potential non-carcinogenic risk to children. Long-term persistence of leaded petrol, building materials, interior paint, school located near industrial areas and major roads, as well as vehicle emission are the factors attributed to the presence of heavy metals in classroom dust. Further research under a long-term monitoring plan and actual values in a health risk model is crucial before a final decision on heavy metal exposure and its relationship to young children health risks can be made. Nevertheless, the findings of this study provide crucial evidence to include indoor dust quality in school assessment because the environmental processes and impacts of surrounding school area have health risk implications on young children.  相似文献   

3.
The contributions of heavy metals in selected vegetables through atmospheric deposition were quantified in an urban area of India. Deposition rate of Zn was recorded maximum followed by Cu, Cd and Pb. The concentrations of Zn and Cu were highest in Brassica oleracea, Cd in Abelmoschus esculentus and B. oleracea, while Pb was highest in Beta vulgaris. Heavy metal pollution index showed that B. oleracea was maximally contaminated with heavy metals followed by A. esculentus and then B. vulgaris. The results of washing showed that atmospheric deposition has contributed to the increased levels of heavy metals in vegetables. Both Cu and Cd posed health risk to local population via test vegetables consumption, whereas Pb posed the same only through B. oleracea. The study concludes that atmospheric depositions can elevate the levels of heavy metals in vegetables during marketing having potential health hazards to consumers.  相似文献   

4.
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.  相似文献   

5.
Rapid urbanization and industrialization in South China has placed great strain on the environment and on human health. In the present study, the total suspended particulate matter (TSP) in the urban and suburban areas of Hong Kong and Guangzhou, the two largest urban centres in South China, was sampled from December 2003 to January 2005. The samples were analysed for the concentrations of major elements (Al, Fe, Mg and Mn) and trace metals (Cd, Cr, Cu, Pb, V and Zn), and for Pb isotopic composition. Elevated concentrations of metals, especially Cd, Pb, V and Zn, were observed in the urban and suburban areas of Guangzhou, showing significant atmospheric trace element pollution. Distinct seasonal patterns were observed in the heavy metal concentrations of aerosols in Hong Kong, with higher metal concentrations during the winter monsoon period, and lower concentrations during summertime. The seasonal variations in the metal concentrations of the aerosols in Guangzhou were less distinct, suggesting the dominance of local sources of pollution around the city. The Pb isotopic composition in the aerosols of Hong Kong had higher 206Pb/207Pb and 208Pb/207Pb ratios in winter, showing the influence of Pb from the northern inland areas of China and the Pearl River Delta (PRD) region, and lower 206Pb/207Pb and 208Pb/207Pb ratios in summer, indicating the influence of Pb from the South Asian region and from marine sources. The back trajectory analysis showed that the enrichment of heavy metals in Hong Kong and Guangzhou was closely associated with the air mass from the north and northeast that originated from northern China, reflecting the long-range transport of heavy metal contaminants from the northern inland areas of China to the South China coast.  相似文献   

6.
An intensive investigation was conducted to study the distribution of trace metals in surface soils of Hong Kong and to assess the soil environmental quality. From results of cluster analysis, and comparisons among soil types and areas, it is clearly shown that increases in trace metal concentrations in the soils were generally extensive and obvious in urban and orchard soils, less so in vegetable soils, whilst rural and forest soils were subjected to the least impact of anthropogenic sources of trace metals. However, some of the forest soils also contained elevated levels of As, Cu, and Pb. Urban soils in Hong Kong were heavily polluted by Pb from gasoline combustion. Agricultural soils, both orchard and vegetable soils, usually accumulated As, Cd, Cu, and Zn originating from applications of pesticides, animal manures, and fertilizers. In general, trace metal pollution in soils of the industrial areas and Pb pollution in the soils of the commercial and residential areas were obvious.  相似文献   

7.
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.  相似文献   

8.
Heavy metal pollution of soils along North Shuna-Aqaba Highway, Jordan   总被引:1,自引:0,他引:1  
Attention to heavy metal contamination associated with highways or motorways has risen in the last decades because of the associated health hazards and risks. The present study analysed the metal content in soil samples of one of the main highways along the western part of the Jordanian border, the North Shuna–Dead Sea–Aqaba Highway. The metals analysed were Pb, Zn, Cd, Co and Ni. In the samples collected, the recorded average concentrations were as follows: 40 ppm for Ni, 5 ppm for Cd, 79 ppm for Zn, 79 ppm for Pb, and 25 ppm for Co. The average concentrations of Cd, Pb, and Co are higher than the average natural background values of heavy metals. The geo-accumulation index of these metals in the soils under study indicated that they are uncontaminated with Ni, Zn, and Co and moderately contaminated with Cd and Pb. In all of the investigated locations, the study found that concentrations decreased with depth. The cluster statistical analyses and pollution load index were used to relate pollution to land use or highway conditions. Two main trends were identified: (i) higher concentrations were located near intersections close to the urban areas in the Jordan Valley, in association with junctions controlled by traffic lights and check points; and (ii) lower concentrations were found to the southwest in areas of mainly barren landscape close to the Dead Sea and Aqaba.  相似文献   

9.
The Guadiamar river basin has traditionally received pollutants from two main sources: in its northern section of mining origin, and in its southern section (next to Do?ana National Park) from urban-industrial and agricultural sources. In April 1998, the spill of 6 million m3 of mining wastes (acidic waters and sludge) severely polluted the Guadiamar river basin with heavy metals, which caused serious damage to the local ecosystem. There is a direct association between the physicochemical speciation of an element and its toxicity, biological activity, bioavailability, solubility, etc. This work describes a distribution study of the metals Zn, Cd, Pb and Cu by speciation analysis of surface waters in eleven sampling points of the Guadiamar river basin. Four metal fractions were determined using anodic stripping voltammetry: labile metal forms, H+ exchangeable metal forms, strongly inert forms (associated with organic and inorganic matter in solution), and forms associated with suspended matter. Total concentrations in surface waters followed the trend Zn > Cu > Pb > Cd. The speciation study showed that Zn and Cd were present to a large extent in available forms (labile and H+ exchangeable), while Pb and Cu were found mostly in the less available forms (strongly inert). Moreover, the available forms were found in the northern section (mining pollution) and the strongly inert forms in the southern section (urban, industrial and agricultural pollution). These results can illustrate the potential value of speciation to discern between different sources of pollution.  相似文献   

10.
The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed.  相似文献   

11.

Gene expression can be modified in people who are chronically exposed to high concentrations of heavy metals. The soil surrounding the Ventanas Industrial Complex, located on the coastal zone of Puchuncaví and Quintero townships (Chile), contain heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed international standards. The aim of this study was to determine the potential association of the heavy metals in soils, especially arsenic, with the status of methylation of four tumor suppressor genes in permanent residents in those townships. To study the methylation status in genes p53, p16, APC, and RASSF1A, we took blood samples from adults living in areas near the industrial complex for at least 5 years and compared it to blood samples from adults living in areas with normal heavy metal concentrations of soils. Results indicated that inhabitants of an area with high levels of heavy metals in soil have a significantly higher proportion of methylation in the promoter region of the p53 tumor suppressor gene compared with control areas (p-value: 0.0035). This is the first study to consider associations between heavy metal exposure in humans and aberrant DNA methylation in Chile. Our results suggest more research to support consistent decision-making on processes of environmental remediation or prevention of exposure.

  相似文献   

12.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

13.
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.  相似文献   

14.
The aim of this work was to study metals accumulation in stairway (inside the residential building) and sidewalk (outside the residential building) dust, and health risk of children due to dust exposure. The investigation included the: (a) spatial distributions of Hg, Pb, Cd, Zn and Cu in stairway and sidewalk dust, (b) source analysis of metals in stairway and sidewalk dust, and (c) assessment of the children health risks due to metals exposure from stairway and sidewalk dust. In the smelting district of Huludao, the maximum Hg, Pb, Cd, Zn and Cu contents in stairway dust were 5.324, 4594, 936.8, 48 253, 1377 mg kg?1, respectively, and were 144, 213, 8674, 760 and 69.5 times as high, respectively, as the background values in soil. A strong positive relationship was shown between the stairway and sidewalk dust for each metal (p < 0.01). The trends for Hg, Pb, Cd, Zn and Cu in the stairway and sidewalk dust were similar and with higher concentrations trending Huludao Zinc Plant (HZP). Atmospheric deposition due to metal smelting from HZP was the common source of heavy metals in the sidewalk and stairway dust. Vehicular traffic affected the metal accumulation in dust, but their contribution was slight comparing with atmospheric emission from HZP. Almost all hazard indexes (HIs) for metals due to stairway dust exposure in this study were lower than 1. The health risk for children was low if they would not play in the stairway. However, children were also experiencing the potential health risk from Cd and Pb exposure from sidewalk dust outside residential building, especially near HZP.  相似文献   

15.
The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.  相似文献   

16.

The purposes of this research are to quantify the concentration of heavy metals (Zn, Cu, As, Pb, Cd, and Hg) in the water and fish tissues of common carp (Cyprinus carpio) in the upper Mekong River and to thereby elucidate the potential dietary health risks from fish consumption of local residents. Surface water and fish tissues (gill, muscle, liver, and intestine) from four representative sample areas (influence by a cascade of four dams) along the river were analyzed for heavy metal concentrations. Results revealed that the levels of heavy metals in fish were tissue-dependent. The highest Cu and As levels were found in the liver; the highest Zn and Pb levels occurred in the intestine, and the highest Hg level was found in the muscle. The total target hazard quotient (THQ) value for residents is > 1 for long-term fish consumption, and local residents are, therefore, exposed to a significant health risk. Results from the current study provide an overall understanding of the spatial and tissue distribution of heavy metals in water and fish body along the upper Mekong River under the influence of cascade dams and highlight the potential health risk of As for the local residents of long-term fish consumption.

  相似文献   

17.
Chabukdhara M  Nema AK 《Chemosphere》2012,87(8):945-953
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future.  相似文献   

18.
In this study, we investigated the characteristics of heavy metal contamination in road dusts collected from industrial areas in Korea. A total of 12 sampling sites, including nine sites in three different industrial complexes (ICs), two IC vicinity areas and one background area, were selected for this study. The collected road dusts were divided into four categories. The heavy metals (Cd, Cu, Pb, Zn, and Ni) were extracted from the road dust by an aqua regia extraction method and analyzed by atomic absorption spectrometry. The highest concentrations of Cd, Cu, and Pb were identified in road dusts from areas near the non-ferrous metal IC, followed by those from the petrochemical IC. The petrochemical IC and the mechanical/shipbuilding IC showed the highest concentrations of Ni and Zn in their road dusts, respectively. The concentration of heavy metals in the road dusts collected from the IC vicinity areas, even those located in a rural environment, were very high. The concentration of heavy metals increased with decreasing particle size of the road dusts. This study also analyzed the mobility of the heavy metals in the road dusts using partial sequential extraction with the Tessier procedure. The order of mobility identified, based on exchangeable and carbonate fractions of the heavy metals, was Cd > Zn > Pb > Cu > Ni.  相似文献   

19.
Areas contaminated with heavy metals can pose major risks to human health and ecological environments. The aims of this study are to assess human health risk and pollution index for heavy metals in agricultural soils irrigated by effluents of stabilization ponds in Birjand, Iran. The results revealed that the levels of Cr, Mn, Zn, Fe, Cu, Cd, and Pb were in range of 70.3–149.65, 355–570, 31.15–98.45, 23,925–29,140, 22.75–25.95, 0.17–6.51, and 8.5–23.5 mg/kg in topsoils, respectively. Total hazard index values from heavy metals through three exposure routes for adults and children were 9.13E−01 and 1.10, respectively, indicating that there was non-carcinogenic risk for children. The total risk of carcinogenic metals (Cr, Cd, and Pb) through the three exposure routes for adults and children was 1.06E−04 and 9.76E−04, respectively, which indicates that the metals in the soil will not induce carcinogenic risks to these age groups. Pollution levels of heavy metals in soil samples including enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo) showed heavy metal contamination of agricultural soils. The results of the present study provide basic information about heavy metal contamination control and human health risk assessment management in the study area.  相似文献   

20.
To assess the exposure of avian species in Jiangsu Province, China to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), the flight feathers, eggshells and feces of total ten avian species (including four herons, four cranes, one stork and one gull) were collected during March to May in 2012. The total concentrations of As, Cd and Hg were measured by Atomic Fluorescence Spectrometer; Cr, Cu, Ni, Pb and Zn were measured by inductively coupled plasma optical emission spectrometer. The determined concentrations of Cr (3.94, 1.33–8.30 mg kg?1), Cu (15.02, 7.34–35.53 mg kg?1) and Zn (134.66, 77.26–242.25 mg kg?1) in fresh feathers and Cd (7.93, 7.44–9.12 mg kg?1), Ni (22.74, 19.38–24.71 mg kg?1), Pb (85.06, 78.72–91.95 mg kg?1) and Zn (63.54, 55.82–72.14 mg kg?1) in eggshells were higher than the mean values of other reported data, indicating a considerable heavy metal pollution status in local area. Comparing to the heavy metal levels in early historic feathers (1992–2000), a significant elevation of concentrations has been observed in recent bird feathers. For feathers of Grus japonensis, the heavy metal concentrations increased by 19–267%. This increased tendency was consistent with local GDP (Gross Domestic Products) development. The anthropogenic economic activity especially industrial development may be a critical reason that caused the increase of heavy metal levels in local avian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号