首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper discusses the legal and scientific reasons for separating personal exposure to PM into ambient and nonambient components. It then demonstrates by several examples how well-established models and data typically obtained in exposure field studies can be used to estimate both individual and community average exposure to ambient-generated PM (ambient PM outdoors plus ambient PM that has infiltrated indoors), indoor-generated PM, and personal activity PM. Ambient concentrations are not highly correlated with personal exposure to nonambient PM or total PM but are highly correlated with personal exposure to ambient-generated PM. Therefore, ambient concentrations may be used in epidemiology as an appropriate surrogate for personal exposure to ambient-generated PM. Suggestions are offered as to how exposure to ambient-generated PM may be obtained and used in epidemiology and risk assessment.  相似文献   

2.
Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemiologic associations between ambient concentrations and health effects depend on the correlation between ambient concentrations and personal exposure to ambient-generated PM. This paper separates personal PM exposure into ambient and nonambient components and estimates the outdoor contribution to personal PM exposures with continuous light scattering data collected from 38 subjects in Seattle, WA. Across all subjects, the average exposure encountered indoors at home was lower than in all other microenvironments. Cooking and being at school were associated with elevated levels of exposure. Previously published estimates of particle infiltration (Finf) were combined with time-location data to estimate an ambient contribution fraction (alpha, mean = 0.66+/-0.21) for each subject. The mean alpha was significantly lower for subjects monitored during the heating season (0.55+/-0.16) than for those monitored during the nonheating season (0.80+/-0.17). Our modeled alpha estimates agreed well with those estimated with the sulfur-tracer method (slope = 1.08; R2 = 0.67). We modeled exposure to ambient and nonambient PM with both continuous light scattering and 24-hr gravimetric data and found good agreement between the two methods. On average, ambient particles accounted for 48% of total personal exposure (range = 21-80%). The personal activity exposure was highly influenced by time spent away from monitored microenvironments. The median hourly longitudinal correlation between central site concentrations and personal exposures was 0.30. Although both alpha and the nonambient sources influence the personal-central relationship, the latter seems to dominate. Thus, total personal exposure may be poorly predicted by stationary outdoor monitors, particularly among persons whose PM exposure is dominated by nonambient exposures, for example, those living in tightly sealed homes, those who cook, and children.  相似文献   

3.
This paper presents a new statistical model designed to extend our understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist. The model partitions personal exposure into two distinct components: ambient concentration and nonambient concentration. It is assumed the ambient and nonambient concentration components are uncorrelated and add together; therefore, the model is called a random component superposition (RCS) model. The 24-hr ambient outdoor concentration is multiplied by a dimensionless "attenuation factor" between 0 and 1 to account for deposition of particles as the ambient air infiltrates indoors. The RCS model is applied to field PM10 measurement data from three large-scale personal exposure field studies: THEES (Total Human Environmental Exposure Study) in Phillipsburg, NJ; PTEAM (Particle Total Exposure Assessment Methodology) in Riverside, CA; and the Ethyl Corporation study in Toronto, Canada. Because indoor sources and activities (smoking, cooking, cleaning, the personal cloud, etc.) may be similar in similar populations, it was hypothesized that the statistical distribution of nonambient personal exposure is invariant across cities. Using a fixed 24-hr attenuation factor as a first approximation derived from regression analysis for the respondents, the distributions of nonambient PM10 personal exposures were obtained for each city. Although the mean ambient PM10 concentrations in the three cities varied from 27.9 micrograms/m3 in Toronto to 60.9 micrograms/m3 in Phillipsburg to 94.1 micrograms/m3 in Riverside, the mean nonambient components of personal exposures were found to be closer: 52.6 micrograms/m3 in Toronto; 52.4 micrograms/m3 in Phillipsburg; and 59.2 micrograms/m3 in Riverside. The three frequency distributions of the nonambient components of exposure also were similar in shape, giving support to the hypothesis that nonambient concentrations are similar across different cities and populations. These results indicate that, if the ambient concentrations were completely controlled and set to zero in all three cities, the median of the remaining personal exposures to PM10 would range from 32.0 micrograms/m3 (Toronto) to 34.4 micrograms/m3 (Phillipsburg) to 48.8 micrograms/m3 (Riverside). The highest-exposed 30% of the population in the three cities would still be exposed to 24-hr average PM10 concentrations of 47-74 micrograms/m3; the highest 20% would be exposed to concentrations of 56-92 micrograms/m3; the highest 10% to concentrations of 88-131 micrograms/m3; and the highest 5% to 133-175 micrograms/m3, due only to indoor sources and activities. The distribution for the difference between personal exposures and indoor concentrations, or the "personal cloud," also was similar in the three cities, with a mean of 30-35 micrograms/m3, suggesting that the personal cloud accounts for more than half of the nonambient component of PM10 personal exposure in the three cities. Using only the ambient measurements in Toronto, the nonambient data from THEES in Phillipsburg was used to predict the entire personal exposure distribution in Toronto. The PM10 exposure distribution predicted by the model showed reasonable agreement with the PM10 personal exposure distribution measured in Toronto. These initial results suggest that the RCS model may be a powerful tool for predicting personal exposure distributions and statistics in other cities where only ambient particle data are available.  相似文献   

4.
Modern epidemiology has shown that fluctuations of mortality data are statistically significantly correlated with fluctuations of ambient particulate matter (PM) concentration data. This relation cannot be confounded by exposure to PM of indoor origin because the concentrations of ambient PM are not correlated with concentrations of PM of indoor origin. It has been suggested, given the above understanding, that modern PM exposure measurements and analysis should create separate estimates of exposure to all PM of ambient origin and exposure to all PM of nonambient origin (primarily of indoor origin), and not exposure to total PM. This paper reviews the developments of the form of the general microenvironmental mass balance equation that can be utilized for estimating human exposure to PM of ambient origin and for estimating the portion of total PM exposure that is attributable to nonambient origin PM. The equation is perfectly general and can be applied to conditions of time-varying factors that influence exposure, such as rapidly changing air-exchange rates in a home as doors and windows are opened and closed, and turning on and off air cleaners in a home. It is suggested that this procedure be applied in exposure assessment studies and validated using independent techniques of estimating exposure to PM of ambient origin available in the literature.  相似文献   

5.
ABSTRACT

This paper presents a new statistical model designed to extend our understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist. The model partitions personal exposure into two distinct components: ambient concentration and nonambient concentration. It is assumed the ambient and nonambient concentration components are uncorrelated and add together; therefore, the model is called a random component superposition (RCS) model. The 24-hr ambient outdoor concentration is multiplied by a dimensionless “attenuation factor” between 0 and 1 to account for deposition of particles as the ambient air infiltrates indoors. The RCS model is applied to field PM10 measurement data from three large-scale personal exposure field studies: THEES (Total Human Environmental Exposure Study) in Phillipsburg, NJ; PTEAM (Particle Total Exposure Assessment Methodology) in Riverside, CA; and the Ethyl Corporation study in Toronto, Canada. Because indoor sources and activities (smoking, cooking, cleaning, the personal cloud, etc.) may be similar in similar populations, it was hypothesized that the statistical distribution of nonambient personal exposure is invariant across cities.  相似文献   

6.
Mot time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2.5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4(2-), which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2.5 samples as an indicator of accumulation mode particulate matter of ambient origin. The mean personal and ambient PM2.5 concentrations were 18 micrograms/m3 and 11 micrograms/m3, respectively. In analyses relating personal and ambient measurements, ambient concentrations were expressed either as an average of the values obtained from five ambient monitoring sites for each day of personal sampling, or as the concentration obtained at the ambient site closest to each subject's home. The mean personal to ambient concentration ratio of all samples was 1.75 (range = 0.24 to 10.60) for PM2.5, and 0.75 (range = 0.09 to 1.42) for SO4(2-). Regression analyses were conducted for each subject separately and on pooled data. The median correlation (Pearson's r) between personal and average ambient PM2.5 concentrations was 0.48 (range = -0.68 to 0.83). Using SO4(2-) as the exposure metric, the median r between personal and average ambient concentrations was 0.96 (range = 0.66 to 1.0). Use of the closest ambient site did not improve the median correlation of the group for either PM2.5 or SO4(2-). All pooled analyses resulted in lower correlation coefficients than the median correlation coefficient of individual regressions. Personal SO4(2-) was more highly correlated with all ambient measures than PM2.5. Inclusion of time-activity and dwelling characteristics data did not result in a useful predictive regression model for PM2.5 personal exposure, but improved the model fit from simply regressing against ambient concentration (R2 = 0.27). The model for SO4(2-) was predictive (R2 = 0.82), as personal exposures were largely explained by ambient levels. These results indicate a relatively low correlation between personal exposure and ambient PM2.5 that is not improved by assigning exposure to the closest ambient monitor. The correlation between personal exposure and ambient concentration is high, however, when using SO4(2-), an indicator of accumulation mode particulate matter of ambient origin.  相似文献   

7.
Assessment of human exposure to ambient particulate matter   总被引:8,自引:0,他引:8  
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM). This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

8.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

9.
To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

10.
We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (> 64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM2.5, PM10, SO4(2-), O3, NO2, SO2, and exhaust-related VOCs. Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM2.5 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2.5 sources. Evidence for this was provided by SO4(2-) measurements, which can be thought of as a tracer for ambient PM2.5. For SO4(2-), personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments. Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

11.
The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

12.
An exposure study of 18 subjects with chronic obstructive pulmonary disease (COPD) living in the Boston, MA, area was conducted. The objective was to examine determinants of personal exposures to particulate matter (PM) with aerodynamic diameters of less than 2.5 microm (PM2.5), less than 10 microm (PM10), and between 2.5 and 10 microm (PM2.5-10). In a previous publication, the analyses of the longitudinal individual-specific relationships among indoor, outdoor, and personal levels showed that the relationships varied by subject and by particle size fraction. In the present paper, statistical and physical models were used to examine personal PM2.5, PM10, and PM2.5-10 exposure covariates. Results indicated that time-weighted indoor concentrations were significant predictors of personal PM2.5, PM10, and PM2.5-10 exposures. Also, time-weighted outdoor concentrations, time spent near smokers, and time spent during transportation were important predictors for PM2.5 but not for personal PM2.5-10 exposures. In turn, time spent cleaning contributed to all size-fraction personal exposures, whereas cooking affected only personal PM2.5-10 exposures. The findings showed that the relationship between personal PM2.5 exposures and the corresponding ambient concentrations was influenced by home air exchange rates (or by ventilation status). Because the particle properties or components causing the health effects are unknown, it is not certain to what extent the risk posed by ambient particles can be reduced by controlling any one of these factors.  相似文献   

13.
Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to particulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be evaluated. During the spring study, a more robust personal exposure component was added, as well as a more detailed evaluation of physical factors, such as air-exchange rate, that are known to influence the penetration of particles into the indoor environment. In this paper, comparisons are made among measured personal PM exposures and PM mass concentrations measured at the NERL Fresno Platform site, outside on the premises of the retirement facility, and inside selected residential apartments at the facility during the two 28-day study periods. The arithmetic daily mean personal PM2.5 exposure during the winter study period was 13.3 micrograms/m3, compared with 9.7, 20.5, and 21.7 micrograms/m3 for daily mean overall apartment, outdoor, and ambient (i.e., platform) concentrations, respectively. The daily mean personal PM2.5 exposure during the spring study period was 11.1 micrograms/m3, compared with 8.0, 10.1, and 8.6 micrograms/m3 for the daily mean apartment, outdoor, and ambient concentrations, respectively.  相似文献   

14.
Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m?3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction.The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations (r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak (r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers can aid in identifying factors that influence personal exposures to PM2.5.  相似文献   

15.
Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM. The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

16.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

17.
ABSTRACT

Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM.

The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

18.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

19.
20.
Worshippers in temples may be exposed to high concentrations of pollutants emitted from incense burning. This work assessed the PM2.5 and PM10 exposures of temple worshippers in Taiwan and explored the important exposure determinants such as numbers of passing visitors and joss sticks in censers, worshipping dates, and temple characteristics. Sampling was conducted on the 1st, 2nd, 15th, and 16th of the lunar month in two temples in Taichung, Taiwan. Research staff took samples by wearing one PM2.5 and one PM10 sampler and imitating worshipping activity. Personal environmental monitors connected to personal pumps with 2-L/min flow rates were used for sampling. PM10 samples were also simultaneously taken outside the temples. The results suggested that burning joss sticks in temples is a significant PM exposure source. The geometric mean of personal exposure was 444 microg/m3 PM2.5 [geometric standard deviation (GSD) = 1.8] and 583 microg/m3 PM10 (GSD = 1.4). The latter was approximately 4-6 times that of roadside concentrations. Exposures on the 1st and 15th (with more visitors and more joss sticks) were about 130 microg/m3 PM2.5 and 249 microg/m3 PM10 higher than those on the 2nd and the 16th. Furthermore, each joss stick in the censer contributed about 0.40 microg/m3 of particles to the worshippers' exposure. In the worst case, PM exposure during one temple visit would account for 11% of the personal exposure in one day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号