首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

2.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

3.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

4.
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel).The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m?2 d?1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m?2 d?1, respectively.Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.9–1.4 mg N m?2 d?1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3?, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (~15%) to the total N-budget.Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m?2 d?1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 2–2.5-times higher than in other campaigns.  相似文献   

5.
The objective of the study was to quantify the concentration and emission levels of sulfuric odorous compounds emitted from pig-feeding operations. Five types of pig-housing rooms were studied: gestation, farrowing, nursery, growing and fattening rooms. The concentration range of sulfuric odorous compounds in these pig-housing rooms were 30–200 ppb for hydrogen sulfide (H2S), 2.5–20 ppb for methyl mercaptan (CH3SH), 1.5–12 ppb for dimethyl sulfide (DMS; CH3SCH3) and 0.5–7 ppb for dimethyl disulfide (DMDS; CH3S2CH3), respectively. The emission rates of H2S, CH3SH, DMS and DMDS were estimated by multiplying the average concentration (mg m−3) measured near the air outlet by the mean ventilation rate (m3 h−1) and expressed either per area (mg m−2 h−1) or animal unit (AU; liveweight of the pig, 500 kg) (mg pig−1 h−1). As a result, the emission rates of H2S, CH3SH, DMS and DMDS in the pig-housing rooms were 14–64, 0.8–7.3, 0.4–3.4 and 0.2–1.9 mg m−2 h−1, respectively, based on pig's activity space and 310–723, 18–80, 9–39 and 5–22 mg AU−1 h−1, respectively, based on pig's liveweight, which indicates that their emission rates were similar, whether based upon the pig's activity space or liveweight. In conclusion, the concentrations and emission rates of H2S were highest in the fattening room followed by the growing, nursery, farrowing and gestation rooms whereas those of CH3SH, DMS and DMDS concentrations were largest in the growing room followed by the nursery, gestation and farrowing rooms.  相似文献   

6.
The sea-to-air flux of the biogenic volatile sulphur compound dimethyl sulphide was assessed with the relaxed eddy accumulation (REA) and the gradient flux (GF) techniques from a stationary platform in the coastal Atlantic Ocean. Fluxes varied between 2 and 16 μmol m−2 d−1. Fluxes derived from REA were on average 7.1±5.03 μmol m−2 d−1, not significantly different from the average flux of 5.3±2.3 μmol m−2 d−1 derived from GF measurements. Gas transfer velocities were calculated from the fluxes and seawater DMS concentrations. They were within the range of gas transfer rates derived from the commonly used parameterizations that relate gas transfer to wind speed.  相似文献   

7.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

8.
Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg°) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg° over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from ∼20 (winter) to ∼40 (summer) ng m−2 h−1. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg° from the underlying water surface (∼1–2 ng m−2 h−1) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO2 flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg° flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg° emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg° is the underlying sediments. The pattern of Hg° fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.  相似文献   

9.
A series of source tests were conducted to characterize emissions of particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and total hydrocarbon (THC ) from five types of portable combustion devices. Tested combustion devices included a kerosene lamp, an oil lamp, a kerosene space heater, a portable gas range, and four unscented candles. All tests were conducted either in a well-mixed chamber or a well-mixed room, which enables us to determine emission rates and emission factors using a single-compartment mass balance model. Particle mass concentrations and number concentrations were measured using a nephelometric particle monitor and an eight-channel optical particle counter, respectively. Real-time CO concentrations were measured with an electrochemical sensor CO monitor. CO2, CH4, and THC were measured using a GC-FID technique. The results indicate that all particles emitted during steady burning in each of the tested devices were smaller than 1.0 μm in diameter with the vast majority in the range between 0.1 and 0.3 μm. The PM mass emission rates and emission factors for the tested devices ranged from 5.6±0.1 to 142.3±40.8 mg h−1 and from 0.35±0.06 to 9.04±4.0 mg g−1, respectively. The CO emission rates and emission factors ranged from 4.7±3.0 to 226.7±100 mg h−1 and from 0.25±0.12 to 1.56±0.7 mg g−1, respectively. The CO2 emission rates and emission factors ranged from 5500±700 to 210,000±90,000 mg h−1 and from 387±45 to 1689±640 mg g−1, respectively. The contributions of CH4 and THC to emission inventories are expected to be insignificant due both to the small emission factors and to the relatively small quantity of fuel consumed by these portable devices. An exposure scenario analysis indicates that every-day use of the kerosene lamp in a village house can generate fine PM exposures easily exceeding the US promulgated NAAQS for PM2.5.  相似文献   

10.
A water surface sampler (WSS) was employed in combination with greased knife-edge surface deposition plates (KSSs) to measure the vapor phase deposition rates of PCBs to the sampler at an urban site, Chicago, IL. This sampler employed a water circulation system that continuously removed deposited PCBs. Total (gas+particle) and particulate PCB fluxes were collected with the WSS and KSSs, respectively. Gas phase PCB fluxes were then calculated by subtracting the KSS fluxes (particulate) from the WSS fluxes (gas+particle). The calculated gas phase PCB fluxes averaged 830±910 ng m−2d−1. This flux value is, in general, higher than the fluxes determined using simultaneously measured air–water concentrations in natural waters and is in the absorption direction. This difference is primarily because the PCBs were continuously removed from the WSS water keeping the water PCB concentration near zero.Concurrently, ambient air samples were collected using a modified high volume air sampler. The gas phase PCB concentrations ranged between 1.10 and 4.46 ng m−3 (average±SD, 2.29±1.28 ng m−3). The gas phase fluxes were divided by the simultaneously measured gas phase ambient concentrations to determine the overall gas phase mass transfer coefficients (MTCs) for PCBs. The average gas phase overall MTCs (Kg) for each homolog group ranged between 0.22 and 1.32 cm s−1 (0.54±0.47 cm s−1). The average MTC was in good agreement with those determined using similar techniques.  相似文献   

11.
Eddy covariance measurements of methane were carried out over the fen “Murnauer Moos” in the south of Germany in order to evaluate the performance of a newly developed eddy covariance measurement system, based on a frequency-modulated tunable diode laser spectrometer as a fast chemical sensor. During a six-day period, an average daytime methane emission of (5.4±1.8) mg CH4 m−2 h−1 was measured. We find this value moderate, considering the favorable meteorological and soil conditions for methane emission. Diurnal cycles of the fluxes of methane and carbon dioxide as well as of sensible and latent heat are presented. Results are discussed in terms of relevant micrometeorological quantities, and quality control procedures based on Allan variance and spectral analysis are discussed.  相似文献   

12.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

13.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

14.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

15.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

16.
Surface–atmosphere mercury fluxes are difficult to measure accurately. Current techniques include dynamic flux chambers and micrometeorological gradient and aerodynamic approaches, all of which have a number of intrinsic problems associated with them. We have adapted conditional sampling (relaxed eddy accumulation), a micrometeorological technique commonly used to measure other trace gas fluxes, to measure surface–air mercury fluxes. Our initial flux measurement campaign over an agricultural soil consisted of two 1-week measurement periods, and was longer in duration than previously reported mercury flux measurement periods. Fluxes during both measurement periods ranged between 190.5 (evolution) and –91.7 ng m−2 h−1 (deposition) with an average evolution of 9.67 ng m−2 h−1. The data showed significant diurnal trends, weakly correlated with shallow soil temperatures and solar radiation. This initial trial run indicates that conditional sampling has much promise for the accurate quantification of both short and long-term mercury fluxes.  相似文献   

17.
Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates were calculated using a dynamic flow-through chamber system coupled to a mobile laboratory for in-situ analysis. Average NO fluxes during late spring 1995 were: 50.9±47.7 ng N m−2 s−1 from soil planted with corn in the lower coastal plain. Average NO fluxes during summer 1995 were: 6.4±4.6 and 20.2±19.0 ng N m−2 s−1, respectively, from soils planted with corn and soybean in the coastal region; 4.2±1.7 ng N m−2 s−1 from soils planted with tobacco in the piedmont region; and 8.5±4.9 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. Average NO fluxes for spring 1996 were: 66.7±60.7 ng N m−2 s−1 from soils planted with wheat in the lower coastal plain; 9.5±2.9 ng N m−2 s−1 from soils planted with wheat in the coastal plain; 2.7±3.4 ng N m−2 s−1 from soils planted with wheat in the piedmont region; and 56.1±53.7 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. An apparent increase in NO flux with soil temperature was present at all of the locations. The composite data from all the research sites revealed a general positive trend of increasing NO flux with soil water content. In general, increases in total extractable nitrogen (TEN) appeared to be related to increased NO emissions within each site, however a consistent trend was not evident across all sites.  相似文献   

18.
Steppe ecosystems are regarded as an important sink of atmospheric methane (CH4) and grazing is hypothesized to reduce CH4 uptake. However, firm experimental evidence is required to prove this hypothesis. Using a fully automated, chamber-based measuring system, we conducted continuous high-frequency (at a 3-h interval) measurements of CH4 uptake in a Leymus chinensis steppe, which is a typical grassland ecosystem in Inner Mongolia, China. Two management regimes were investigated: ungrazed since 1999 (UG99) and winter-grazed since 2001 (WG01). Measurements were carried out continuously during the periods of June–September 2004, May–September 2005 and March–June 2006. During all of these periods, significantly lower mean CH4 uptake (±S.E.) at WG01 (28±0.7 μg C m−2 h−1) as compared to UG99 (56±1.0 μg C m−2 h−1) (p<0.01) was found. Total CH4 uptake during the growing seasons (May–September) 2004 and 2005 at WG01 and UG99 was quantified as 1.15 and 2.15 kg C ha−1, respectively. Annual rates of CH4 uptake were approximately 1.91 (WG01) and 3.58 kg C ha−1 (UG99), respectively. These results indicate that winter-grazing of steppe significantly reduced atmospheric CH4 uptake by ca. 47%. The winter-grazing practice may have inhibited CH4 uptake by (a) increasing the likelihood of physiological water stress for CH4-consuming bacteria during dry periods, (b) decreasing gas diffusion into the soil and, (c) reducing the populations of CH4 oxidizing bacteria. These three mechanisms could have collectively or independently facilitated the observed inhibitory effects. Our results suggest that grazing exerts a considerable negative impact on CH4 uptake in semi-arid steppes at regional scales. Notwithstanding, further studies involving year-round, intensive measurements of CH4 uptake are needed.  相似文献   

19.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

20.
The study of mercury (Hg) cycle in Arctic regions is a major subject of concern due to the dramatic increases of Hg concentrations in ecosystem in the last few decades. The causes of such increases are still in debate, and an important way to improve our knowledge on the subject is to study the exchanges of Hg between atmosphere and snow during springtime. We organized an international study from 10 April to 10 May 2003 in Ny-Ålesund, Svalbard, in order to assess these fluxes through measurements and derived calculations.Snow-to-air emission fluxes of Hg were measured using the flux chamber technique between ∼0 and 50 ng m−2 h−1. A peak in Gaseous Elemental Mercury (GEM) emission flux from the snow to the atmosphere has been measured just few hours after an Atmospheric Mercury Depletion Event (AMDE) recorded on 22 April 2004. Surprisingly, this peak in GEM emitted after this AMDE did not correspond to any increase in Hg concentration in snow surface. A peak in GEM flux after an AMDE was observed only for this single event but not for the four other AMDEs recorded during this spring period.In the snow pack which is seasonal and about 40 cm depth above permafrost, Hg is involved in both production and incorporation processes. The incorporation was evaluated to ∼5–40 pg m2 h. Outside of AMDE periods, Hg flux from the snow surface to the atmosphere was the consequence of GEM production in the air of snow and was about ∼15–50 ng m−2 h−1, with a contribution of deeper snow layers evaluated to ∼0.3–6.5 ng m−2 h−1. The major part of GEM production is then mainly a surface phenomenon. The internal production of GEM was largely increasing when snow temperatures were close to melting, indicating a chemical process occurring in the quasi-liquid layer at the surface of snow grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号