首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ambient aerosol samples, collected from Mangalore region in the southwest coast of India during the period of late winter (February and March) to early summer (April and May), have been analysed for water-soluble ionic species. Their abundance pattern is dominated by HCO3, SO42−, Na+, Cl, with minor contribution from NO3, Ca2+, NH4+, K+ and Mg2+ indicating the contribution from not only sea salt, but also from anthropogenic and dust sources; with pronounced seasonal variability. The suspended particulate matter concentration varied from 35 to 160 μg m−3, with consistently higher values during the late winter. Back trajectory analysis suggests the origin of the air masses shifting from Indo-Gangetic Plains (during late winter) to those from the Arabian Sea and the area around Persian Gulf during April–May. Air masses passing over Northern India (Indo-Gangetic Plains) impart characteristic contribution of ionic species from fossil fuel combustion, biomass burning and eolian dust as asserted by the factor analysis. A detailed study on characterisation of aerosols from south Asian region is rather sparse but essential for modelling the effect of tropospheric aerosols on climate.  相似文献   

2.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

3.
Two-stage aerosol samples (PM10–2.5 and PM2.5) were collected at a coastal rural site located in the northeastern Mediterranean, between April 2001 and 2002. A total of 562 aerosol samples were analyzed for trace elements (Fe, Ti, Mn, Ca, V, Ni, Zn, Cr) and water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl, Br, NO3, SO42−, C2O42− and MS:methane sulfonate). PM10, crustal elements, sea salt aerosols and NO3 were mainly associated with the coarse mode whereas non-sea salt (nss)SO42−, C2O42−; MS, NH4+, Cr and Ni were found predominantly in the fine fraction. Concentrations of aerosol species exhibited orders of magnitude change from day to day and the aerosol chemical composition is heavily affected by dust events under the influence of airflow from North Africa. During the sampling period, 11 specific mineral dust events of duration varying from 1 day to a week have been identified and their influence on the chemical composition of aerosols has been studied in detail. Ionic balance analysis performed in the coarse and fine aerosol fractions indicated anion and cation deficiency due to CO32− and H+, respectively. A relationship between nssSO42− and NH4+ denoted that sulfate particles were partially neutralized (70%) by ammonium. Excess-K/BC presented two distinct ratios for winter and summer, indicating two different sources: fossil fuel burning in winter and biomass burning in summer.  相似文献   

4.
Concentrations of major ions, SO42−, NO3, Cl, H+, Ca2+, K+, Mg2+, Ca2+ and conductivity were measured in approximately 300 daily, wet-only rain samples collected at a permanent rural station between 1993 and 1998. Concentrations of anthropogenic ions NH4+, SO42− and NO3 were among the highest values reported in whole EMEP network, suggesting that the Anatolian plateau is under strong influence of distant emission sources. Although transport of pollutants have significant influence on the chemical composition of precipitation, average pH of the rainwater is 6.2 due to extensive neutralization of acidity. Approximately 95% of the acidity in collected samples is neutralized, particularly in summer season. The neutralizing agents are primarily CaCO3 and NH3. Concentrations of crustal ions are higher in summer season due to enhanced resuspension of soil particles from dry surface soil. Concentrations of anthropogenic ions SO42− and NO3 do not change significantly between summer and winter due to higher intensity of rains in summer season. Although concentrations of ions measured in this study is among the highest reported in EMEP network, wet deposition fluxes are low compared to flux values reported for similar sites in Europe, due to low annual precipitation in the Anatolia. Wet deposition fluxes of all measured parameters are highly episodic. Source regions affecting chemical composition precipitation in the Central Anatolia is investigated using trajectory statistics.  相似文献   

5.
Scavenging coefficients are obtained for sea-salt particles at rainfall intensity of 5, 10, 15, 20 and 45 mm h−1. Evolutions of size distributions for sea-salt particles by precipitation scavenging are simulated using theoretically estimated scavenging coefficients. Results indicate that below-cloud scavenging affects mainly sea-salt particles in coarse mode. Observed concentrations of Na+ and Cl in rainwater increased with rainfall intensity and aerosol size. Comparison of predicted concentrations of Na+ and Cl in rainwater with observed ionic concentrations of short-timed wet-only samples collected during rain events on 2 August 2002 over Arabian Sea (ARMEX-2002) supports the model result.  相似文献   

6.
Cloud water was collected by aircraft over the Japan Sea and the Northwestern Pacific Ocean during the winter and early spring seasons. The concentrations of major ions in the cloud water were higher at cloud bases than at cloud tops. The equivalents based ratio of Na+/nssSO42− and NO3/nssSO42− at cloud bases was higher than that at cloud tops, whereas the nssCa2+/nssSO42− ratio was higher at cloud tops. The concentrations of nssSO42− were higher than those of NO3 over the Japan Sea. The ratio of NO3/nssSO42− in the cloud water over the Pacific Ocean was higher than that over the Japan Sea. Especially, when the winter monsoon wind pressure pattern collapsed, the concentrations of NO3 were much higher than those of nssSO42−. The concentrations of peroxides in the cloud water ranged from below the detection limit to 6.2 μM, and were much lower than those in the fog water near the summit of Mt. Norikura during the summer season. Most of the samples showed the condition (NH4++nssCa2+)<(NO3+nssSO42−), which implies insufficient amounts of bases to neutralize the acids. Chloride loss in the cloud water was observed, and this may be caused by the deposition of HCl gas to the sea surface.  相似文献   

7.
The water-soluble ions in fine (PM<2.5) and coarse (PM2.5−10) atmospheric aerosols collected in Christchurch during winter 2001, spring 2000 and summer 2001, and in Auckland during winter 2001 have been studied in terms of coarse–fine and day–night differences. Although the chemical characteristics of the coarse particles were similar in both cities, those of the fine particles collected in the Christchurch winter were significantly different, as manifested by higher concentrations of nss-K+, nss-Cl, nss-Ca2+, nss-SO42−, NO3 and NH4+. It was found that nighttime PM10 and nss-K+ concentrations were much higher than their daytime concentrations in the Christchurch winter but a clear day–night difference was not apparent in the Auckland winter. Moreover, in the winter, sea-salt ions did not show a day–night difference; however, nss-SO42− had opposite day–night variation in the two cities. An ion balance calculation has shown that in most samples, coarse particles can be neutral or alkaline, however, fine particles can be neutral or acidic. The possibility of ammonium salts existing in the fine particles collected in the Christchurch winter is discussed and it is concluded that a variety of ammonium salts were present. Equivalent ratios suggest that the fine particles may be significantly aged in the Christchurch winter.The evidence from our soluble ion study strongly suggests that wood and coal burning and secondary aerosols make a significant contribution to fine particulate mass in the Christchurch atmosphere. Thus, home-heating, a sheltered geographic location and relatively calm atmospheric condition are thought to be the major causes for the serious atmospheric particulate pollution in the Christchurch winter.  相似文献   

8.
Concentrations of several major rainwater components were determined in rain events occurring during the early morning hours (12:00 midnight to 6:00 a.m.) and during the afternoon (12:00 noon to 6:00 p.m.) to examine possible diurnal variations. Generally, rainwater components with gas phase origins (H+, NO3, formaldehyde, H2O2, formic acid, acetic acid, pyruvic acid, oxalic acid, and lactic acid) had higher concentrations during p.m. rain events compared to a.m. events. Although source strengths of both biogenic and anthropogenic rainwater components are generally higher during the daytime, nocturnal removal of a wide variety of components in similar proportions (approximately 2–3× less at night) indicates a physical rather than a chemical process affecting diurnal variations. Rainwater components with aerosol origins (Cl, and SO42−) displayed the opposite diurnal pattern or showed no diurnal variation. Possible reasons for these variations include one or both of the following scenarios: (1) the formation of dew at night removes gas phase atmospheric gasses but not aerosols or (2) during the night, a marine air mass containing lower concentrations of all analytes and higher concentrations of Cl is advected into the area.  相似文献   

9.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

10.
The concentrations of PM2.5−10, PM2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 (n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM2.5−10 and PM2.5 were, respectively, 26 (± 16; 21) μg m−3 and 17 (± 13; 14) μg m−3. Their mean concentrations were 1.7–1.8 times higher in dry season (May–October) than in rainy season (November–April). The WSIS comprised, respectively, 34% and 28% of the PM2.5−10 and PM2.5 masses. Chloride, Na+ and Mg2+ were the predominant ions in PM2.5−10, indicating a significant influence of sea-salt aerosols. In PM2.5, SO42− (∼97% nss-SO42−) and NH4+ were the most abundant ions and their equivalent concentration ratio (SO42−/NH4+ ∼1.0) suggests that they were present as (NH4)2SO4 particles. The mean concentration of (NH4)2SO4 was 3.4 μg m−3. The mean equivalent PM2.5 NO3 concentration was eight times smaller than those of SO42− and NH4+. The PM2.5 NO3 concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO3 as a result of higher levels of NOy during the dry season and/or reduced volatilization of NH4NO3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM2.5.  相似文献   

11.
Annual and seasonal trends were discussed for precipitation chemistry in Japan on the basis of a nationwide monitoring network by Japan Environment Agency. For this analysis, 17 sites, selected from the 23 network sites after evaluation of data completeness for the present purpose, were grouped into four areas in terms of the sea which could characterize each area: the Pacific Ocean, the Japan Sea, the Seto Inland Sea and the East China Sea areas. Major ion concentrations at each site were subjected to least-squares multiple regression analysis, and discussion was principally focused on the area-groups. Each area showed significant (p<0.05) decreasing trends in non-sea-salt sulfate (nss-SO42−) concentrations with the annual mean change rate of −3.0% yr−1, whereas no significant trends were detected for NO3 at 59% of the sites. Ammonium (NH4+) showed significant increasing trends for 35%, and decreasing trends for 18% of the sites; and, the maximum change rate of 3.8% yr−1 was recorded in the Pacific Ocean area. Non-sea-salt calcium (nss-Ca2+) concentrations significantly decreased in northern and some industrialized areas. Both the annual cycle-amplitudes and effects of precipitation amounts were significant for the four ions at almost all sites. The maximum concentrations of nss-SO42− and -Ca2+ occurred from winter to spring at most sites. The seasons when the maximum concentrations of NO3 and NH4+ occurred, were found to differ from area to area. Furthermore, the trends in precipitation nss-SO42−, and NO3 were qualitatively consistent with those of anthropogenic emissions of SO2, and NOx in Japan, respectively.  相似文献   

12.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

13.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

14.
Agricultural waste burning is a widespread practice throughout the world but there is little information about its pollutant impact. This paper deals with a preliminary study of the pollution observed in Vitoria (Northern Spain) caused by cereal waste burning. The mean hourly flux of pollutants produced by cereal waste burning fires can reach values of 1.4 kt of CO2, 13 t of TPM and 3 t of NOx in the area around Vitoria. Measurements obtained in the area of emission and inside fire plumes show high ratios (NO2/NOx) indicating that nitrogen oxides emitted by the source undergo a rapid transformation in the same area of emission. Results relating to aerosol composition collected in Vitoria during burning periods show an increase in the concentration of K+, NO3 and Cl ions, that are inter-correlated. The modification of the ionic composition of aerosols also affects the chemistry of the rain collected in Vitoria. During the burning period, it is particularly noticeable that anthropogenic pollution (usually identifiable by the correlation between SO42− and NO3 concentrations) disappears, indicating the existence of an independent source of NO3 not linked to the SO42− source. Similar results were deduced studying BAPMON data collected in Spain during cereal waste burning. Finally, we note that ozone concentration measured at Vitoria is not affected by the pollution generated by the burning fires.  相似文献   

15.
The effects of the burning of fireworks on air quality in Beijing was firstly assessed from the ambient concentrations of various air pollutants (SO2, NO2, PM2.5, PM10 and chemical components in the particles) during the lantern festival in 2006. Eighteen ions, 20 elements, and black carbon were measured in PM2.5 and PM10, and the levels of organic carbon could be well estimated from the concentrations of dicarboxylic acids. Primary components of Ba, K, Sr, Cl, Pb, Mg and secondary components of C5H6O42−, C3H2O42−, C2O42−, C4H4O42−, SO42−, NO3 were over five times higher in the lantern days than in the normal days. The firework particles were acidic and of inorganic matter mostly with less amounts of secondary components. Primary aerosols from the burning of fireworks were mainly in the fine mode, while secondary formation of acidic anions mainly took place on the coarse particles. Nitrate was mainly formed through homogeneous gas-phase reactions of NO2, while sulfate was largely from heterogeneous catalytic transformations of SO2. Fe could catalyze the formation of nitrate through the reaction of α-Fe2O3 with HNO3, while in the formation of sulfate, Fe is not only the catalyst, but also the oxidant. A simple method using the concentration of potassium and a modified method using the ratio of Mg/Al have been developed to quantify the source contribution of fireworks. It was found that over 90% of the total mineral aerosol and 98% of Pb, 43% of total carbon, 28% of Zn, 8% of NO3, and 3% of SO42− in PM2.5 were from the emissions of fireworks on the lantern night.  相似文献   

16.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

17.
A sampling campaign of re-suspended road dust samples from 53 sites that could cover basically the entire Beijing, soil samples from the source regions of dust storm in August 2003, and aerosol samples from three representative sites in Beijing from December 2001 to September 2003, was carried out to investigate the characteristics of re-suspended road dust and its impact on the atmospheric environment. Ca, S, Cu, Zn, Ni, Pb, and Cd were far higher than its crustal abundances and Ca2+, SO42−, Cl, K+, Na+, NO3 were major ions in re-suspended road dust. Al, Ti, Sc, Co, and Mg in re-suspended road dust were mainly originated from crustal source, while Cu, Zn, Ni, and Pb were mainly derived from traffic emissions and coal burning, and Fe, Mn, and Cd were mainly from industrial emissions, coal combustion and oil burning. Ca2+ and SO42− mainly came from construction activities, construction materials and secondary gas-particle conversions, Cl and Na+ were derived from industrial wastewater disposal and chemical industrial emissions, and NO3 and K+ were from vehicle emissions, photochemical reactions of NOX, biomass and vegetable burning. The contribution of mineral aerosol from inside Beijing to the total mineral aerosols was ∼30% in spring of 2002, ∼70% in summer of 2002, ∼80% in autumn of 2003, ∼20% in PM10 and ∼50% in PM2.5, in winter of 2002. The pollution levels of the major pollution species, Ca, S, Cu, Zn, Ni, Pb, Fe, Mn, and Cd in re-suspended road dust reached ∼76%, ∼87%, ∼75%, ∼80%, ∼82%, ∼90%, ∼45%, ∼51%, and ∼94%, respectively. Re-suspended road dust from the traffic and construction activities was one of the major sources of pollution aerosols in Beijing.  相似文献   

18.
The influence of dissolved NO2 and iron on the oxidation rate of S(IV) species in the presence of dissolved oxygen is presented. To match the conditions in the real environment, the concentration of iron in the reaction solution and trace gases in the gas mixture was typical for a polluted atmosphere. The time dependence of HSO3, SO42−, NO2 and NO3 and the concentration ratio between Fe(II) and total dissolved iron were monitored. Sulphate formation was the most intensive in the presence of an SO2/NO2/air gas mixture and Fe(III) in solution. The highest contribution to the overall oxidation was from Fe-catalysed S(IV) autoxidation. The reaction rate in the presence of both components was equal to the sum of the reaction rates when NO2 and Fe(III) were present separately, indicating that under selected experimental conditions there exist two systems: SO2/NO2/air and SO2/NO2/air/Fe(III), which are unlikely to interact with each other. The radical chain mechanism can be initiated via reactions Fe(III)–HSO3 and NO2–SO32−/HSO3.  相似文献   

19.
Glaciochemical records recovered from an 80.4 m ice core in the East Rongbuk (ER) Glacier (elevation: 6450 m) on the northern slope of Mt. Everest provide a reconstructing of past climate for the period AD 1846–1997. Empirical orthogonal function (EOF) analysis on the eight major ion (SO42−, Mg2+, Ca2+, Na+, Cl, NH4+, K+, and NO3) time-series reveals inter-species relations and common structure within the ER glaciochemical data. The first two EOF series (EOF1-ions and EOF2-ions) are compared with instrumental data of sea level pressure (SLP) to demonstrate that the EOF-ions series display strong connections to winter (January) and summer (July) SLP over the Mongolian region. The positive relationship between EOF1-ions and the Mongolian High (MongHi) series suggests that enhanced winter MongHi strengthens the transport of dust aerosols southward from arid regions over central Asia to Mt. Everest. The close correspondence between EOF2-ions and the summer Mongolian Low (MongLow) indicates that the deeper MongLow, which is related to the stronger Indian Monsoon, contributes to a decrease in summer dust aerosols. Therefore, the ER ice core record comprises two assemblages of crustal species, each transported from different source regions during different seasons. EOF1-ions represents the majority of the crustal species and is related to winter atmospheric circulation patterns. These species are mainly transported from arid regions of central Asia during the winter dry season. EOF2-ions represents crustal species transported by summer atmospheric circulation from local/regional sources in the northern and southern Himalayas.  相似文献   

20.
With the aim of understanding the origin of acid rains in South China, we analyzed rainwaters collected from Guangzhou, China, between March 2005 and February 2006. The pH of rainwater collected during the monitoring period varied from 4.22 to 5.87; acid rain represented about 94% of total precipitation during this period. The rainwater was characterized by high concentrations of SO42−, NO3, Ca2+, and NH4+. SO42− and NO3, the main precursors of acid rain, were related to the combustion of coal and fertilizer use/traffic emissions, respectively. Ca2+ and NH4+ act as neutralizers of acid, accounting for the decoupling between high SO42− concentrations and relatively high pH in the Guangzhou precipitation. The acid rain in Guangzhou is most pronounced during spring and summer. A comparison with acid precipitation in other Chinese cities reveals a decreasing neutralization capacity from north to south, probably related to the role and origin of alkaline bases in precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号