首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

2.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

3.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

4.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

5.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

6.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

7.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

8.
The emission of isoprene has been studied from a forest of Abies Borisii-regis, a Mediterranean fir species previously thought to emit only monoterpenes. Emission studies from two independent enclosure experiments indicated a standardised isoprene emission rate of (18.4±3.8) μg gdry-weight−1 h−1, similar in magnitude to species such as eucalyptus and oak which are considered to be strong isoprene emitters. Isoprene emission depended strongly on both leaf temperature (2°C–34°C) and photosynthetically active radiation (PAR) below 250 μmol m−2 s−1, becoming saturated with respect to PAR above this value. The annual isoprene emission rate was estimated to be (132±29) kT yr−1 for those trees growing within Greece, comparable to current estimates of the total isoprene budget of Greece as a whole, and contributing significantly to regional ozone and carbon monoxide budgets. Monoterpene emission exhibited exponential temperature dependence, with 1,8-cineole, α-pinene, β-pinene and limonene forming the primary emissions. A standardised total monoterpene emission rate of (2.7±1.1) μg gdry-weight−1 h−1 was calculated, corresponding to an annual monoterpene emission rate of (24±12) kT yr−1. Research was conducted as part of the AEROBIC’97 (AEROsol formation from BIogenic organic Carbon) series of field campaigns.  相似文献   

9.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

10.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

11.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

12.
The estimated annual throughfall deposition flux of Hg in a northern mixed-hardwood forest in the Lake Huron Watershed was 10.5±1.0 μg m−2 compared to an annual precipitation Hg flux of 8.7±0.5 μg m−2 (June 1996–June 1997). The source of this additional Hg in throughfall is often attributed to wash-off of dry deposition, but foliar leaching of Hg may also be important. To determine the influence of both dry deposition and foliar leaching of Hg and other elements in throughfall, we measured a suite of trace elements (Hg, Al, Mg, V, Mn, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, and Pb) in throughfall, precipitation, and ambient air samples from a northern mixed-hardwood forest. Based on a multiple linear regression model, dry deposition had the most important influence on Hg, Al, La, Ce, V, As, Cu, Zn, Cd, and Pb fluxes while foliar leaching strongly influenced Mg, Mn, Rb, Sr, and Ba fluxes in net throughfall. The Hg dry deposition flux was estimated using gaseous and aerosol Hg measurements and modeled deposition velocities. The calculated dry deposition flux (∼12–14 μg m−2) of Hg to the canopy indicated that atmospheric deposition of Hg could easily account for all of the Hg deposited in net throughfall (1.9±0.1 μg m−2). Although there is a large uncertainty associated with these techniques, the modeling estimates indicate that atmospheric Hg may account for all of the Hg deposited in litterfall (11.4±2.8 μg m−2).  相似文献   

13.
The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m−3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m−3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m−3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day−1, respectively. The public concern should pay considerable attention to professional drivers’ health.  相似文献   

14.
The emissions of VOC from freshly cut and shredded Grevillea robusta (Australian Silky Oak) leaves and wood have been measured. The VOC emissions from fresh leaf mulch and wood chips lasted typically for 30 and 20 h respectively, and consisted primarily of ethanol, (E)-2-hexenal, (Z)-3-hexen-1-ol and acetaldehyde. The integrated emissions of the VOCs were 0.38±0.04 g kg−1 from leaf mulch, and 0.022±0.003 g kg−1 from wood chips. These emissions represent a source of VOCs in urban and rural air that has previously been unquantified and is currently unaccounted for. These VOCs from leaf mulch and wood chips will contribute to both urban photochemistry and secondary organic aerosol formation. Any CH4 emissions from leaf mulch and wood chips were <1×10−11 g g dry mass−1 s−1.  相似文献   

15.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

16.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

17.
A series of source tests were conducted to characterize emissions of particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and total hydrocarbon (THC ) from five types of portable combustion devices. Tested combustion devices included a kerosene lamp, an oil lamp, a kerosene space heater, a portable gas range, and four unscented candles. All tests were conducted either in a well-mixed chamber or a well-mixed room, which enables us to determine emission rates and emission factors using a single-compartment mass balance model. Particle mass concentrations and number concentrations were measured using a nephelometric particle monitor and an eight-channel optical particle counter, respectively. Real-time CO concentrations were measured with an electrochemical sensor CO monitor. CO2, CH4, and THC were measured using a GC-FID technique. The results indicate that all particles emitted during steady burning in each of the tested devices were smaller than 1.0 μm in diameter with the vast majority in the range between 0.1 and 0.3 μm. The PM mass emission rates and emission factors for the tested devices ranged from 5.6±0.1 to 142.3±40.8 mg h−1 and from 0.35±0.06 to 9.04±4.0 mg g−1, respectively. The CO emission rates and emission factors ranged from 4.7±3.0 to 226.7±100 mg h−1 and from 0.25±0.12 to 1.56±0.7 mg g−1, respectively. The CO2 emission rates and emission factors ranged from 5500±700 to 210,000±90,000 mg h−1 and from 387±45 to 1689±640 mg g−1, respectively. The contributions of CH4 and THC to emission inventories are expected to be insignificant due both to the small emission factors and to the relatively small quantity of fuel consumed by these portable devices. An exposure scenario analysis indicates that every-day use of the kerosene lamp in a village house can generate fine PM exposures easily exceeding the US promulgated NAAQS for PM2.5.  相似文献   

18.
Regional estimates of fluxes of volatile organic compounds (VOCs) are required to improve our understanding of their role in the chemistry of the atmosphere. Flux measurements on such a scale can best be obtained using aircraft-based systems. These systems usually rely on the eddy covariance technique, which requires fast response gas sensors for flux measurement, but such sensors are not available for most organic compounds, therefore, the relaxed eddy-accumulation (REA) technique was selected. An aircraft-based REA sampling system was developed and used to measure isoprene emission over the boreal forest during the 1996 summer. Over a short period in July at the Boreal Ecosystem/Atmosphere Study (BOREAS) southern study area (SSA), the isoprene fluxes ranged from −0.06 to 1.79 μg m-2 s-1, with a mean of 0.59±0.34 μg m-2 s-1, while in August at the BOREAS northern study area (NSA) the isoprene fluxes ranged from 0.00 to 0.26 μg m-2 s-1, with a mean of 0.14±0.09 μg m-2 s-1. In the SSA, the isoprene fluxes over aspen ranged from 0.44 to 1.79 μg m-2 s-1, with a mean of 0.92±0.33 μg m-2 s-1, whereas over black spruce, isoprene fluxes ranged from −0.06 to 0.54 μg m-2 s-1, with a mean of 0.36±0.21 μg m-2 s-1. The isoprene fluxes were exponentially correlated with solar radiation and radiative surface temperature. High correlations between isoprene fluxes and the fluxes of CO2 and latent heat were also observed. Carbon lost through isoprene emissions was about 0.7 and 0.8% of the CO2 assimilation rate for aspen and black spruce, respectively. The results demonstrate that the aircraft-based relaxed eddy-accumulation technique is a promising approach for quantifying the atmosphere–surface exchange of VOCs on a regional scale.  相似文献   

19.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

20.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号