首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以废旧电视机外壳(WTVS)为原料,通过磺化反应和溶胀-渗透方法来制备大孔型离子交换树脂(SMD001),并将其作为CO_2吸附材料的载体,采用N_2吸附-脱附、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、扫描电镜(SEM)、压汞法等手段对大孔型离子交换树脂(SM-D001)进行表征。考察了不同正庚烷的量、不同乙醇/水质量比和不同致孔时间下制备的SM-D001对CO_2吸附能力的影响。结果表明,当致孔剂正庚烷的量为25 g,乙醇/水质量比为90∶10,致孔时间为5 h时,制备的离子交换树脂对CO_2的平衡吸附量达到1.87mmol·g~(-1)。以SM-D001为载体,五乙烯六胺(PEHA)为改性剂,采用配位法制备的固态胺吸附剂对CO_2的吸附能力达到3.61 mmol·g~(-1),并对其进行吸附动力学研究。上述研究结果为进一步证明固态胺吸附剂对CO_2吸附过程是物理吸附和化学吸附共同作用的结论提供参考。  相似文献   

2.
为了探究同步去除酸性矿山废水(AMD)中酸度及重金属离子的新型多功能矿物环保材料,确定最佳运行方式,在固定床操作条件下,对比研究复合颗粒吸附柱、锰砂柱、复合颗粒-锰砂混合填充柱对AMD中酸度、Mn~(2+)的去除效果,确定小型连续流反应器的最佳吸附剂;在确定最佳吸附剂的基础上,对比研究升流淹没式、降流淹没式、降流非淹没式吸附柱对AMD中酸度、Mn~(2+)的去除效果,确定小型连续流反应器的最佳运行方式;并结合SEM、XRD等微观分析揭示复合颗粒动态吸附去除重金属离子的规律及机理。实验结果表明:3种吸附材料对Mn~(2+)的吸附容量关系为:PG柱(28.871 mg·g~(-1))PG-MS柱(16.935 mg·g~(-1))MS柱(2.194 mg·g~(-1));3种运行方式对Mn~(2+)的吸附容量关系为:降流非淹没式(28.817mg·g~(-1))升流淹没式(26.532 mg·g~(-1))降流淹没式(23.479 mg·g~(-1))。因此,固定床吸附柱处理含Mn~(2+)酸性矿山废水动态实验的最佳吸附材料为膨润土-钢渣复合颗粒,复合颗粒的最佳运行方式为降流非淹没式。PG在去除Mn~(2+)的过程中不仅存在吸附、化学沉淀等作用,还存在聚沉作用,即具有吸附-聚沉协同作用,并且Mn~(2+)在复合颗粒表面的赋存状态主要以Mn-Si-O相结合的矿物相以及Ca Mn7O12沉淀物存在。  相似文献   

3.
为了研究吸附剂在饮用水中除磷控菌效果,在聚丙烯(PP)纤维上负载氧化镧(La_2O_3)纳米颗粒,并用聚乙烯亚胺(PEI)对吸附剂表面进行亲水改性,制备出PEI/La_2O_3/PP纤维吸附材料,使用X射线衍射分析(XRD)对其进行了表征。实验结果表明:偏酸性条件有利于磷的吸附,溶液中共存离子对吸附效果的影响不大;当温度为45℃时,PEI/La_2O_3/PP对磷的饱和吸附容量达到76.67 mg·g-1,吸附过程能够较好地拟合Langmuir模型;吸附动力学过程能够较好地拟合准二级反应动力学方程。该吸附材料对饮用水中的微量磷具有良好的吸附去除效果,磷深度去除后能达到明显的抑菌效果。  相似文献   

4.
利用生物质吸附去除水中重金属离子具有制备简单、成本低廉、环境影响小等优点,通过高锰酸钾-硫酸亚铁处理过程对铜绿微囊藻改性,制备了能够高效吸附水中锑(Sb)的铁锰改性藻粉复合材料。扫描电镜和X射线光电子能谱分析表明,改性藻粉中存在大量铁锰氧化物颗粒,铁锰的主要存在形式为Fe_2O_3和MnO_2。改性后的复合藻粉对Sb(Ⅲ)的吸附量从3.06 mg·g~(-1)增加到35.30 mg·g~(-1),对Sb(Ⅴ)的吸附量从3.07 mg·g~(-1)增加到4.37 mg·g~(-1),并且改性后的复合藻粉到达吸附平衡的时间更短。Langmuir模型可以很好地描述Sb在复合藻粉上的吸附行为,Elovich模型对藻粉吸附Sb(Ⅲ)和Sb(Ⅴ)的吸附过程拟合较好(R~2=0.957,0.943),而复合藻粉更适用准二级动力学模型(R2=0.953,0.961)。Sb(Ⅲ)主要通过氧化和吸附作用被去除,而Sb(Ⅴ)在复合藻粉表面形成表面络合物后被吸附。共存阴离子(SO_4~(2-)、CO_3~(2-)、PO_4~(3-))的存在对复合藻粉吸附Sb(Ⅲ)几乎没有影响,但是共存阴离子浓度越高,对Sb(Ⅴ)的吸附抑制越明显。  相似文献   

5.
改性菌丝体对Ni2+的吸附特性研究   总被引:3,自引:0,他引:3  
《环境工程学报》2003,4(10):23-26
通过专利对菌丝体进行了改性.所制备的改性菌丝体对重金属离子具有良好的吸附效果.结果表明,其对Ni2+的吸附容量63.2 mg/g(初始水溶液中Ni2+浓度为200 mg/L),是甲壳素吸附剂的3.3倍(19.1 mg/g),与壳聚糖吸附剂相比吸附容量提高了135%,与D751与南开152相比吸附容量非常接近.用0.5%-0.2%的解吸剂便可以完全解吸,能够重复使用达6次以上.本文还研究了改性菌丝体对Ni2+的吸附过程中重要的影响因素,结果发现,在微碱性(pH=8-9)条件下,改性菌丝体可以把初始浓度高达800 mg/L的Ni2+溶液一次性降低到17 mg/L,为改性菌丝体在工业废水处理中的应用奠定了良好的基础.  相似文献   

6.
以非离子表面活性剂P123作为模板剂,正硅酸乙酯为硅源,加入扩孔剂合成SBA-15介孔材料。以三乙烯四胺(TETA)和四乙烯五胺(TEPA)作为改性剂,对所得材料分别进行质量百分比20%、30%、35%和40%的负载量改性,得到CO2的吸附材料。用热重法测定材料的CO2吸附脱附性能,氮气物理吸附-脱附和元素分析法对样品进行表征。结果表明,同样负载条件下,TEPA改性效果显著优于TETA改性,这是由于TEPA比TETA多出一个胺基;在4个附载量中,30%~35%的负载量最优,其中35%TEPA负载量的扩孔SBA-15(SBA-15k)的CO2吸附量最高,达2.86 mmol/g;循环吸附脱附的结果表明经过5次吸附脱附,材料的吸附性能没有明显变化;吸附平衡时间很短,不到10 min,有利于实际应用;氮气物理吸附-脱附和元素分析结果表明,改性剂很好地负载到SBA-15k样品上,SBA-15k对TEPA和TETA的负载改性起到促进作用。  相似文献   

7.
通过专利对菌丝体进行了改性。所制备的改性菌丝体对重金属离子具有良好的吸附效果。结果表明 ,其对Ni2 + 的吸附容量 6 3.2mg/g (初始水溶液中Ni2 + 浓度为 2 0 0mg/L) ,是甲壳素吸附剂的 3.3倍 (19.1mg/g) ,与壳聚糖吸附剂相比吸附容量提高了 135 % ,与D75 1与南开 15 2相比吸附容量非常接近。用 0 .5 %— 0 .2 %的解吸剂便可以完全解吸 ,能够重复使用达 6次以上。本文还研究了改性菌丝体对Ni2 + 的吸附过程中重要的影响因素 ,结果发现 ,在微碱性 (pH =8— 9)条件下 ,改性菌丝体可以把初始浓度高达 80 0mg/L的Ni2 + 溶液一次性降低到 17mg/L ,为改性菌丝体在工业废水处理中的应用奠定了良好的基础。  相似文献   

8.
将生物选择性吸附和光催化技术耦合合成一种新型的多功能壳聚糖-二氧化钛吸附剂(CTA),这种新型的多功能壳聚糖-二氧化钛吸附剂能够同时吸附重金属和降解有机污染物。实验发现,CTA对银离子有较好的吸附容量,在初始浓度为1 000 mg/L时吸附容量为100.3 mg/g,且吸附了银离子的吸附剂对甲基橙有更好的降解效果。扫描电镜表明,CTA紫外条件下吸附银以后表面会有纳米银的生成,能谱显示纳米银颗粒在一定条件下可以由CTA表面自行脱落。  相似文献   

9.
为克服活性炭磷吸附能力有限的问题,使用ZnCl_2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3种方法中最好的修饰方法。对载体法制备吸附剂的材料用量的比较发现,在Fe(Ⅲ)和Al(Ⅲ)摩尔比为9:1的条件下,把1.5 g活性炭加入到总浓度为1 mol·L~(-1)的200 m L Fe(Ⅲ)和Al(Ⅲ)混合溶液中,形成的纳米Fe/Al(氢)氧化物能够较好地利用活性炭表面,该复合材料1.5AC-Fe/Al在磷平衡浓度约为50 mg·L~(-1)时吸附量达到29.3 mg·g~(-1)。该材料表征结果表明,纳米Fe/Al(氢)氧化物颗粒被成功负载在活性炭表面。在酸性条件下,复合材料表面的—H~+和—OH_2~+所引起的静电吸附和配位交换是促进吸附带负电磷酸根离子的原因。  相似文献   

10.
采用酸碱盐溶液浸渍方法对活性炭进行改性,探究了其吸附油气的特征,考察了改性后的活性炭对油气吸附量和穿透时间的影响,采用BET、SEM、XRD及FT-IR等方法对活性炭进行了表征。结果表明:改性后的活性炭孔结构和表面化学性质发生了明显的变化,2~#样品(醋酸改性)比表面积最大为1 264.33 m~2·g~(-1),碱改性活性炭对油气的吸附性能优于其他改性方法,3~#样品(氨水改性)吸附容量最高为0.279 g·g~(-1),拟合动力学速率常数k′值是0.096 3,5#样品(氢氧化钾改性)穿透时间最长为130 min;改性处理后,增加了活性炭表面的—OH与C=C含量,正丁烷主要以—CH_2基团吸附在吸附剂表面。在综合酸碱盐溶液改性的基础上,利用Yoon-Nelson动力学方程对吸附曲线进行拟合,评价改性活性炭对油气的吸附性能。以上研究结果可为活性炭吸附油气的工业应用提供参考。  相似文献   

11.
胺化麻黄废渣生物吸附剂对水中阳离子染料的吸附   总被引:1,自引:0,他引:1  
以麻黄废渣为原料,采用环氧氯丙烷和二乙烯三胺对其进行化学改性,得到麻黄废渣的改性产物。将其应用到中性红和亚甲基蓝2种染料模拟废水的吸附实验,并研究了p H值、吸附剂用量、吸附时间等因素对吸附的影响。结果表明,在p H值为5.5,吸附温度为25℃的条件下,用4 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为1 000 mg/L的中性红溶液0.5 h,去除率为99.89%;用10 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为500 mg/L的亚甲基蓝溶液1 h,去除率为99.38%。改性吸附剂对中性红和亚甲基蓝的吸附可以用准二级动力学方程描述,吸附等温线符合Langmuir和Freundlich模型,根据Langmuir方程,25℃时胺化麻黄废渣生物吸附剂对中性红和亚甲基蓝的最大吸附量分别为362.3 mg/g和152.7 mg/g。实验结果显示,胺化麻黄废渣生物吸附剂是一种吸附性能优异的吸附剂,用于处理染料废水有较好的应用前景。  相似文献   

12.
采用共沉淀法制备锆改性铝氧化物。在研究其对水中磷吸附特性的基础上,结合SEM-EDS、XRD、FTIR和XPS等表征手段,分析吸附剂的结构组成以及反应前后的表面基团变化,探讨吸附除磷的机理。结果表明:Power动力学模型和Langmuir等温线模型可以很好地描述锆改性铝氧化物对磷的吸附特征;在投加量为0.3 g·L~(-1)、溶液pH为7时,磷的饱和吸附量为76.63 mg·g~(-1);pH=4~6时,吸附剂除磷效果较好,在偏碱性环境下,磷吸附量明显降低;Cl~-和SiO_3~(2-)对磷的吸附有较强的抑制作用,且干扰效果随着阴离子浓度的升高而加强。通过材料表征结果可知,吸附剂呈无定型结构,表面含有丰富的羟基。该吸附剂的除磷机制主要为表面络合和离子交换作用。  相似文献   

13.
将生物选择性吸附和光催化技术耦合合成一种新型的多功能壳聚糖-二氧化钛吸附剂(CTA),这种新型的多功能壳聚糖-二氧化钛吸附剂能够同时吸附重金属和降解有机污染物。实验发现,CTA对银离子有较好的吸附容量,在初始浓度为1 000 mg/L时吸附容量为100.3 mg/g,且吸附了银离子的吸附剂对甲基橙有更好的降解效果。扫描电镜表明,CTA紫外条件下吸附银以后表面会有纳米银的生成,能谱显示纳米银颗粒在一定条件下可以由CTA表面自行脱落。  相似文献   

14.
锁磷剂的应用与推广加快了人们对镧改性粘土的不断研究。为了探讨2种制备方法所得的镧改性凹凸棒土吸附剂对水体中磷酸根的去除效果,首先制备了镧改性凹凸棒土(La-ATP)及镧改性酸活化凹凸棒土(La-H-ATP)2种吸附剂,然后在不同条件下研究比较了二者对磷酸根的吸附效果。结果表明:La-ATP和La-H-ATP对磷酸根吸附曲线适合Langmuir方程,饱和吸附量(qm)均大于12 mg·g~(-1)。高温有利于La-ATP和La-H-ATP对磷酸根的吸附,并且La-ATP的平衡吸附量(qe)在35、25和10℃条件下均大于La-H-ATP。在酸性条件下,La-ATP具有比La-H-ATP更好的除磷效果。两种吸附剂对磷酸根具有较好的吸附选择性,几种常见共存离子存在时的吸附量无明显变化。  相似文献   

15.
为了提高介孔硅材料对抗生素的吸附性能和简化材料合成步骤,在纯介孔硅(UMS)的基础上,使用"一锅法"合成了烷基改性介孔硅(FMS)和核壳磁性烷基改性介孔硅(MMS),并系统地研究了这3种吸附剂对恩诺沙星(ENR)、培氟沙星(PEF)和环丙沙星(CIP)3种氟喹诺酮类抗生素(FQs)的吸附性能。批次吸附实验结果表明,改性材料的吸附容量是未改性材料的5倍,且对氟喹诺酮类抗生素具有更高的吸附容量和吸附效率,对CIP、PEF和ENR的最大吸附容量分别为201.52、275.46和286.35 mg·g~(-1),并且在10 min内可以达到90%以上的去除率。溶液的pH、腐殖酸浓度和离子强度对吸附过程的影响实验结果表明,MMS在pH为中性时可以达到最大吸附容量,且在高腐殖酸浓度下仍保持较高的吸附容量。回收再生实验结果表明,MMS具有良好的稳定性且吸附剂易于与溶液分离。进一步分析可知,静电作用和疏水作用是3种抗生素与MMS之间吸附的主要驱动力,使得MMS对抗生素具有优异的吸附性能。以上研究结果可为吸附去除污水中抗生素提供参考。  相似文献   

16.
采用氧化还原-共沉淀法将铝锰复合氧化物负载到沸石表面制成颗粒型吸附材料,探究了该吸附剂同步去除氨氮(NH_4~+-N)和磷(P)的吸附动力学和吸附等温线特征,并讨论了吸附剂投加量和溶液p H值对吸附效果的影响。结果表明:铝锰复合氧化物改性沸石(aluminum-manganese bimetal oxide coated zeolite,AMOCZ)对NH_4~+-N及P的吸附动力学曲线均符合拟二阶吸附动力学方程的特征;NH_4~+-N的吸附等温线数据可用Freundlich方程进行较好地拟合,而Langmuir方程更适用于描述P的吸附等温线特征。NH_4~+-N和P共存时,两者在AMOCZ表面的饱和吸附量分别从单独体系下的1.24和6.43mg·g~(-1)变为8.17和6.51 mg·g~(-1)。这说明P的存在可显著促进AMOCZ对NH_4~+-N的吸附,而NH_4~+-N的存在对P的吸附无显著影响。此外,复合污染条件下,P的存在在p H=3~10范围内均能促进AMOCZ对NH_4~+-N的吸附;NH_4~+-N在p H为3~8时对P的吸附起促进作用,p H大于8时则会抑制AMOCZ对P的吸附。  相似文献   

17.
为探究以芦苇灰为硅源制备有序多孔SBA-15的潜力,并弄清所获得的SBA-15对溶液中Cd2+离子的吸附性能。采用水热-后期接枝的合成方法,制备出三胺基改性SBA-15吸附剂(3N-SBA-15),通过批实验的方法讨论了吸附时间、体系pH、温度和离子强度等因素对水溶液中Cd2+吸附的影响及其再生研究,最后对Cd2+吸附机制进行了探讨。结果表明,合成的材料均具有高度规则的多孔特征,其对Cd2+的吸附受体系pH控制;胺基改性可以显著增强SBA-15对Cd2+的吸附能力。3N-SBA-15对溶液中Cd2+的吸附过程可用Langmuir模型描述,298 K时Cd2+的最大吸附量可达1.07 mmol/g,升温有利于吸附进行。0.01 mol/L EDTA和0.1 mol/L HCl溶液是3N-SBA-15较为合适的再生剂;3N-SBA-15对Cd2+的吸附机制可能为包含物理吸附、离子交换和络合反应等过程的复杂吸附过程。研究表明,3N-SBA-15是一种对水体Cd2+具有良好吸附能力的吸附材料,芦苇灰是制备SBA-15的一种潜在硅源。  相似文献   

18.
制备了负载铝沸石(Al-Z)和负载钛沸石(Ti-Z)复合材料并测试了2种吸附材料对氟离子的吸附性能。未改性的人造沸石对氟离子几乎没有吸附作用,室温下2 g·L~(-1)的Al-Z和4 g·L~(-1)的Ti-Z的最大吸附量分别为32.94 mg·g~(-1)和15.03 mg·g~(-1)。在偏酸性和中性条件下有利于Al-Z对氟离子的吸附;Ti-Z对氟离子的吸附效果在酸性条件下较好;Zeta电位结果表明Al-Z对氟离子的吸附较Ti-Z有更广泛的pH适应能力;Al-Z和Ti-Z受CO2-3和PO3-4共存离子的影响对氟离子的去除率下降,且Ti-Z受影响程度更大,这是因为CO2-3和PO3-4的存在会改变溶液的pH值,使溶液呈碱性,从而影响吸附剂对氟离子的吸附效果;准二级动力学模型和Freundlich等温线方程符合描述这两种改性沸石对氟离子的吸附行为。与Ti-Z相比,Al-Z在吸附剂用量、氟离子吸附量、对pH与共存阴离子的适应性方面表现更好,是一种非常具有应用前景的氟离子吸附剂。  相似文献   

19.
采用浸渍法制备了Pd/SBA-15催化剂,并考察了PVP辅助分散对Pd/SBA-15催化剂催化甲苯燃烧性能的影响,利用XRD、Raman、N_2吸附-脱附、HRTEM和XPS对催化剂结构及Pd物种的存在状态等进行了研究。结果表明,适量PVP辅助分散剂的加入,促进了Pd物种的分散并形成了稳定的活性物种,Pd物种主要以高度分散的PdO纳米粒子存在。通过PVP辅助分散作用,Pd/SBA-15催化剂表现出极好的甲苯催化燃烧活性。当空速为19 500 mL·(g·h)~(-1),反应温度为200℃时,即有97%的甲苯可被催化氧化为CO_2和H_2O,明显优于传统浸渍法制备的Pd/SBA-15催化剂催化性能。  相似文献   

20.
在150 m L溶液中,稻秆用量为5 g,硝酸浓度为10%,稻秆颗粒度为20目,改性温度为80℃,改性时间为3h,制备得到硝酸改性稻秆吸附剂。详细探讨了用该吸附剂处理含Pb~(2+)废水的影响因素:吸附剂用量、Pb~(2+)初始浓度、溶液pH值、吸附时间和吸附温度等对Pb~(2+)吸附率的影响,并进一步通过正交实验及对比实验得出处理200 m L,初始浓度为300mg·L-1的含Pb~(2+)废水的最佳吸附工艺为:吸附剂用量为4 g,pH值为6,吸附时间为3 h,吸附温度为20℃,在此工艺条件下,对Pb~(2+)的吸附率达到94.31%,吸附量为14.15 mg·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号