首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
在温度为(30±1)℃,以人工配置无机高氨氮废水为进水的条件下,采用序批式生物膜CANON反应器(陶粒为填料),研究了不同NH_4~+-N浓度条件下,CANON工艺脱氮过程中N_2O的释放特征。研究表明:通过控制NH_4~+-N浓度分别为200、300、400和500 mg·L~(-1),获得了84.69%、80.58%、78.16%和90.09%的TN去除率,对应的TN去除负荷分别为1.42、1.48、1.52、1.82 kg·(m~3·d)~(-1),CANON反应器脱氮性能非常稳定;反应过程中,对应的N_2O释放总量分别为6.44、10.34、13.45、19.53 mg,即随着初始NH_4~+-N浓度的增加,N_2O的释放总量逐渐增加;而N_2O的释放率虽然也有增加,但增加幅度并不显著,占TN损失的比例分别为6.06%、7.00%、7.06%、7.15%;在一个反应周期内,N_2O与NO_2~--N均呈现先升高后降低的变化趋势,但无因果关系。CANON反应器产生大量N_2O的主要原因,并非源于NO2--N的积累,也与FNA无关,而是羟氨积累造成的。  相似文献   

2.
为了实现中低浓度氨氮废水情况下CANON工艺的快速启动和稳定运行,在升流式生物膜反应器中,通过调控水力停留时间、溶解氧和回流比,研究进水氨氮浓度为200 mg·L~(-1)时CANON工艺的快速启动过程。结果表明:1~17 d,污泥处于驯化阶段,HRT为12 h,DO控制在0.1~0.2 mg·L~(-1),50%的回流比满足污泥上升流态;18~60 d,HRT逐步缩短至8 h,DO控制在0.3~0.5 mg·L~(-1),回流比增大至150%,AOB和ANAMMOX在该阶段成功富集,填料上初步形成生物膜;61 d时,HRT缩短至6 h,加大回流比至200%,溶解氧控制在0.3~1.0 mg·L~(-1),系统启动加速,此时,进水氨氮负荷增加至0.795 kg·(m~3·d)~(-1);运行至第93天,氨氮和总氮平均去除率分别达到95%和82%,ANAMMOX完成挂膜,CANON工艺成功启动。高通量测序结果显示,在整个启动过程中,优势菌群AOB和ANAMMOX的丰度呈增长趋势,启动完成时,生物膜中AOB占比19.46%,ANAMMOX占比22.49%,分别属于Brocadiaceae和Nitrosmonadaceae。CANON系统集成絮体、颗粒和填料挂膜3种污泥形态为一体,实现了在中低浓度氨氮废水中的高效稳定运行。  相似文献   

3.
针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L~(-1),N反应器DO浓度1.5~2.2 mg·L~(-1),MLSS 3 500~4 500 mg·L~(-1),污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L~(-1)。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。  相似文献   

4.
采用4组0.5 L的批式反应器,调节进水初始NH_4~+-N为100 mg·L~(-1),控制温度为30℃,DO为(2.00±0.20)mg·L~(-1),以葡萄糖为有机碳源,采用化学抑制法研究进水C/N分别为0、0.5、1.0和1.5时,单级脱氮系统的氮转化情况、N_2O排放量及N_2O排放途径。结果表明,反应器进水C/N从0升高至1.5,在6 h时系统TN去除率由14.5%增至23.5%,而系统N_2O排放量由180μg减至10μg,N_2O转化率由2.5%降至0.1%。随着进水C/N的升高,氨氧化菌(AOB)反硝化产生的N_2O排放量在3.6~11.7μg之间波动,而同步硝化-反硝化产生的N_2O排放量降幅明显,由176.8μg降至5.3μg。当C/N为较低的0和0.5时,同步硝化-反硝化对N_2O排放贡献率均达到85%以上,系统N_2O排放途径主要为同步硝化-反硝化;当C/N为较高的1.0和1.5时,AOB反硝化对N_2O排放贡献率为45.9%和26.5%,系统N_2O排放途径主要为同步硝化-反硝化和AOB反硝化作用。  相似文献   

5.
针对黄姜皂素水解废液有机物浓度高、酸度高、可生化性差等特点,采用常压蒸发浓缩法预处理黄姜皂素水解废液,研究了初始pH值和浓缩倍数对废液主要污染物蒸发浓缩效果的影响。结果表明:初始pH值对蒸出液COD、氨氮、VFA浓度变化影响较大。pH7时,COD和乙酸浓度分别由4 045 mg·L~(-1)、1 742 mg·L~(-1)快速降低到980 mg·L~(-1)、82.9 mg·L~(-1);氨氮浓度在25 mg·L~(-1)处波动;pH7时,COD浓度在1 000 mg·L~(-1)处波动,乙酸由82.9 mg·L~(-1)缓慢降低到6.4 mg·L~(-1),氨氮浓度由26.2 mg·L~(-1)快速升高到207 mg·L~(-1)。浓缩倍数对蒸出液污染物浓度影响也很大。浓缩2~10倍,COD、氨氮、乙酸浓度分别由980、26.2、82.9 mg·L~(-1)升高到3 372、141、2 250 mg·L~(-1),对应占其污染物总量的百分比由0.66%、1.91%、1.46%升高到4.08%、18.5%、71.5%。考虑工艺设备耐腐蚀性、蒸发能耗、耗时和处理效果等因素,选择初始pH=7、浓缩5~7倍比较适宜。蒸出液经过适当处理可做工艺回用水,达到废水处理资源化、减量化的目的。  相似文献   

6.
以驯化好的反硝化除磷污泥为研究对象,通过批式实验考察了NO_2~--N和NaCl浓度对反硝化除磷率及N_2O释放的影响。当进水亚硝酸盐的浓度由15 mg·L~(-1)升高至25和40 mg·L~(-1)时,除磷率由68.81%±0.5%降至66.25%±1%和62.88%±0.8%,TN的去除率由90.6%±0.7%降至74.55%±1.5%和51.65%±2%,N_2O释放量分别为4.82、13.83和17.06 mg。当NaCl质量分数为0%、0.5%、1%和2%时,TN的去除率由74.55%±1%降至68%±2%、64.2%±1%和54.3%±2.5%,除磷率由66.37%±1.5%降至61.29%±1%、50.47%±2%和36.7%±0.5%,N_2O-N转化率为41.1%±2%、41.4%±2.5%、48.94%±0.6%和51.03%±2%。因此,NO_2~--N和NaCl质量分数的升高均会降低脱氮除磷效率,但增加了N_2O释放量;兼顾脱氮除磷效率前提下,NO_2~--N为25 mg·L~(-1)、NaCl质量分数为1%是N_2O释放量增加的优化条件。  相似文献   

7.
通过调控进水NO_2~--N浓度分别为0、25、50和100 mg·L~(-1),研究不同初始NO_2~--N浓度对CANON工艺脱氮效果和N_2O释放的影响。结果表明:SBBR中,初始NO_2~--N浓度分别为0、25、50和100 mg·L~(-1)时,TN去除率分别达到81.65%、89.09%,87.75%和88.39%;对应的N_2O释放率分别为7.03%、7.93%、10.21%和11.94%;前1/2周期内N_2O释放量分别占总释放量的46%、53%、68%和75%。通过分析可知,较高初始NO_2~--N浓度,可以增加TN去除率,但是会刺激CANON工艺中N_2O释放量的增加。  相似文献   

8.
为了探讨固定化包埋填料高氨氮负荷下短程硝化的稳定运行研究,以固定化技术包埋一定量硝化菌填料为载体,并利用序批次反应器进行处理人工配置的氨氮废水实验,该实验研究了实现短程硝化影响因素DO、有机物的控制范围,驯化期间,分别将温度、pH值、DO控制在(31±1)℃、7.8~8.2、1.8~2.0 mg·L~(-1)范围内,进水有机物浓度始终保持在50 mg·L~(-1)以下,体积填充率为15%,采用高游离氨(3.03~14.18 mg·L~(-1))对NOB产生抑制作用,使活性填料中的AOB成为优势菌群,通过历时55 d的培养实现了该填料短程硝化的启动及稳定运行,结果表明,进水氨氮浓度保持200 mg·L~(-1)左右,氨氮去除速率高达28.29 mg NH+4-N·(L·h)~(-1)的同时,氨氮的去除率97%,亚硝酸盐积累NO_2~--N/NO_x~--N85%,实验同时还考察了活性填料的抗冲击负荷能力与单个周期内短程硝化运行特征。  相似文献   

9.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH_4~+-N)和总氮(TN)浓度分别为(1 100±70)mg·L~(-1)和(1 520±65)mg·L~(-1),1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L~(-1),其中以有机氮(TON)为主,NH_4~+-N浓度约25 mg·L~(-1);经2级IASBR处理后,出水TN和NH_4~+-N浓度分别稳定在40 mg·L~(-1)和20 mg·L~(-1)以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN≤40 mg·L~(-1)的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L~(-1),经过2级IASBR处理后出水COD降至约770 mg·L~(-1)。  相似文献   

10.
杨祎楠  强虹  裴梦富  王瑾 《环境工程学报》2019,13(12):2963-2972
针对高固体鸡粪厌氧消化运行困难问题,利用完全混合式厌氧反应器(CSTR),通过逐级提高进料总固体浓度(TS)的方法,研究不同进料TS((5.20±0.56)%、(7.24±0.36)%、(9.30±0.26)%和(6.22±0.26)%)的鸡粪连续中温厌氧消化效果。实验结果表明,进料TS由(5.20±0.56)%提高为(9.30±0.26)%,挥发性固体(VS)产气率由(0.64±0.05) L·g~(-1)下降为0.07 L·g~(-1),有机物去除率明显减少,挥发性脂肪酸(VFAs)由(0.53±0.02) g·L~(-1)累积至(1.62±0.02) g·L~(-1),总氨氮浓度(TAN)和游离氨浓度(FA)分别由(1.06±0.11) g·L~(-1)和(0.07±0.02) g·L~(-1)累积至3.40 g·L~(-1)和0.68 g·L~(-1),消化过程受到氨抑制。采用Boltzmann模型对不同氨氮浓度下VS产甲烷率和VS去除率进行模拟,拟合结果表明,TAN升高所引发的FA持续累积导致高固体鸡粪厌氧消化氨抑制逐步形成,与VS产甲烷率相比,VS去除率对氨氮的抑制响应具有滞后性。降低进料TS至(6.22±0.26)%,氨抑制得到有效缓解,但反应器处于"抑制稳定状态"。因此,为保证反应器长期高效平稳运行,建议鸡粪连续中温厌氧消化的进料浓度不超过7.24%。研究为高固体鸡粪厌氧消化的工程化应用提供参考。  相似文献   

11.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

12.
在成功实现生活污水短程生物脱氮的基础上,采用体积为3 L的小试反应器,利用在线DO监测手段控制DO=1.0 mg·L~(-1),通过投加Na NO2的方式控制系统初始NO~(-2)-N=40 mg·L~(-1),以丙烯基硫脲(ATU)抑制NH+4-N的氧化过程,考察了生物脱氮好氧阶段不同反应过程中N_2O的产生量。结果表明,除缺氧反硝化细菌的反硝化过程外,好氧条件下,氨氧化菌(AOB)能够以NH+4-N作为电子供体,NO~(-2)-N作为电子受体,进行反硝化脱氮过程,其反硝化产物为N_2O。生物脱氮好氧阶段AOB的好氧反硝化和异养菌的缺氧反硝化反应中,N_2O的产量分别占分别占进水总氮(NH+4-N+NO~(-2)-N)的7.23%和7.80%。好氧阶段NH+4-N和NO~(-2)的氧化过程中,几乎没有N_2O的产生。  相似文献   

13.
考察投药量、水力负荷、停留时间等因素,对诱导结晶反应器去除Cu~(2+)、Zn~(2+)效果的影响,确定最佳运行参数为:水力负荷40 m~3·(m~2·h)~(-1),结晶药剂投药量2∶1,停留时间90 min。在最佳运行参数下,结晶反应器处理含铜20 mg·L~(-1),含锌10 mg·L~(-1)、pH为5.5~6.0的混合重金属废水。反应器连续运行40 d,出水中铜离子和锌离子平均浓度分别为1.31 mg·L~(-1)和4.57 mg·L~(-1),铜离子和锌离子平均去除率分别是93.4%和51.3%。诱晶载体粒径由0.568 mm长至0.617 mm,平均生长速度为0.001 23 mm·d-1。研究表明,该诱导结晶工艺可以用作同时去除废水中的Cu~(2+)、Zn2+。  相似文献   

14.
采用敞开式SBR,分别研究曝气量为20、40、60和80 L·h-1工况下,短程硝化过程中溶解态N_2O的逸出规律及N_2O总产量。研究结果表明:曝气过程中溶解态N_2O释放速率与曝气量及溶解态N_2O浓度正相关,随着曝气量的增大,N_2O释放速率-溶解态N_2O浓度变化系数分别为0.001 5、0.002 4、0.003 5和0.004 3 s-1;在各种曝气量下的亚硝化过程中,溶解态N_2O浓度呈先增加后减少现象变化;短程硝化反应时间随曝气量的增长而明显缩短;在亚硝化反应过程中溶解态N_2O最大值及N_2O总产量随着曝气量的增大而明显减小;曝气量由低到高,亚硝化率逐步降低,分别为99.6%、94.9%、92.2%和85.5%,N_2O总产量分别为21.3、9.4、6.8和3.7 mg·L~(-1)。低曝气量(20 L·h-1)下,N_2O的产量远高于高曝气量(80 L·h-1)下的产量。中等强度曝气量(40 L·h-1、60 L·h-1)下,亚硝化过程既可以维持较高的亚硝化率,又可以有效地减少N_2O总产量。  相似文献   

15.
采用序批式活性污泥反应器(SBR),在富集亚硝态氮氧化菌(NOB)的基础上,考察了DO对连续进水模式下硝化过程中N_2O减量化的影响。结果表明,在污泥氨氧化菌(AOB)和NOB的比耗氧速率(SOUR)分别为(2.36±0.31)、(7.62±0.43)mg/(L·h)条件下,不外加碳源进行小试实验,氨氮均小于1.0mg/L,亚硝态氮均小于0.5mg/L。DO由0.2mg/L增至3.0mg/L过程中,随着DO增加,积累的硝态氮浓度逐渐上升,而累计产生的N_2O浓度先上升后下降。DO为0.2mg/L时,积累的硝态氮和累计产生的N_2O浓度最低,可以实现N_2O的最大减量化。在进水连续投加氨氮的方式下,氨氮氧化速率不是引起N_2O生成的关键步骤,碳源缺乏的情况下NOB硝化系统中低DO可以有效控制N_2O的释放。  相似文献   

16.
采用连续进水(feed-batch)方式的SBR在高氨氮负荷(1 kg·(m~3·d)~(-1))和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明在温度(35±1)℃,进水氨氮浓度为1000mg·L~(-1)的条件下对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16mg·(g·h)(以MLVSS计)降到0.3 mg·(g·h)~(-1)(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO_2~--N平均浓度为466.45 mg·L~(-1),NO_2~--N/NH_4~+-N接近1,NO_3~--N浓度低于20 mg·L~(-1),満足厌氧氨氧化(ANAMM0X)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。  相似文献   

17.
采用逐步降温法启动上流式污泥床反应器(UASB)并对其过程做动力学分析。UASB反应器采用逐渐提高进水COD负荷的方式在25℃进行启动,当COD去除率达到70%完成启动。启动完成后,降低温度运行反应器,在20℃时COD的去除率达到65%左右。在25℃条件下,出水氨氮浓度增加,总氮浓度有增加趋势,随后出水总氮浓度降低;在20℃负荷提高和稳定时期,出水的氨氮浓度逐渐降低,总氮浓度逐渐升高。建立低温条件下厌氧处理高浓度有机废水的动力学模型,分析结果看出20℃运行阶段的基质比降解速度高于25℃阶段基质比降解速度,在20℃条件下厌氧污泥活性最大,污泥性能最佳。推测原因,可能是由于25℃时进水浓度较高,且废水中含有大量抑制性物质(1.1 mg·L~(-1)),较大影响了微生物的降解速率、而在20℃时进水浓度降低,废水中的抑制性物质也有所降低,为0.75 mg·L~(-1)。  相似文献   

18.
针对进水氨氮浓度变化会影响CANON颗粒污泥功能微生物间的协同导致系统不稳定的问题,通过接种常温下贮存2个月的自养颗粒污泥,并采用3种调控策略(维持HRT不变,快速提升氨氮浓度(R1);维持HRT不变,逐级提升氨氮浓度(R2);逐级提升进水氨氮浓度同时调整HRT,以125 mg·L~(-1)为进水氨氮增幅(R3)),分别考察各种调控策略对系统适应275 mg·L~(-1)和400 mg·L~(-1)氨氮浓度的效能影响,探讨调控策略与污泥性能的关系及游离氨(FA)、溶解氧(DO)的影响。结果表明,污泥性能提升期,负荷变化最为平稳的策略R3率先适应进水氨氮浓度的提升,仅44 d内总氮去除负荷可达到3.5 kg·(m~3·d)~(-1);污泥性能成熟期,快速提升负荷的策略R1可缩短适应时间至25 d,总氮去除率稳定在80%以上,去除负荷达到5.3 kg·(m~3·d)~(-1)。FA会影响功能微生物活性,策略R1在污泥性能提升期,FA浓度高达16.6~26.7 mg·L~(-1),一定程度上抑制了好氧氨氧化菌(AOB)和厌氧氨氧化菌(AMX)的活性,导致系统适应期延长。在污泥适应高氨氮负荷过程中,比氨氧化速率(SAOR)和比总氮去除速率(SNRR)逐渐提高,污泥浓度和颗粒粒径逐渐增大。f值(ΔN O3--N/ΔTN)可作为DO调节的重要依据,DO与氨氮去除负荷呈良好的正相关性。  相似文献   

19.
以低氨氮废水为研究对象,研究了亚硝化反应的快速启动,通过对比实验考察了羟胺(NH_2OH)和肼(N_2H_4)投加对氨氧化与亚硝酸盐氧化反应的影响。结果表明:NH_2OH的投加更有利低氨氮废水亚硝化反应的实现;在此基础上,通过序批式运行模式,在每周期开始时投加NH_2OH(2 mg·L~(-1)),研究了低氨氮废水亚硝化反应的快速启动;通过9 d的驯化,亚硝酸盐积累率可达到100%,AOB与NOB丰度比升高至25,有利于亚硝化启动的实现。研究结果可为低氨氮废水亚硝化反应快速启动提供技术支持。  相似文献   

20.
稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化,探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1mg·L~(-1),有利于NOB选择性抑制,提高氨氮去除率,出水NO_2~--N/NH_4~+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45kg·(m~3·d)~(-1),AOB受显著抑制,出水NO_2~--N/NH_4~+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号