首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水质净化高效复合微生态制剂的研制   总被引:2,自引:0,他引:2  
在室内模拟条件下,采用正交实验的方法对光合细菌、枯草芽孢杆菌和反硝化细菌的复配比例进行了研究,筛选一种用于水产养殖水质净化的高效复合微生态制剂。结果表明,当光合细菌(菌细胞浓度约为2×109CFU/mL)、枯草芽孢杆菌(菌细胞浓度约为8×108CFU/mL)和反硝化细菌(菌细胞浓度约为8×108CFU/mL)按菌液体积比为1∶2∶1进行复配利于水中溶解氧的提高和COD、氨氮、亚硝态氮、硝态氮的降解。验证实验表明,筛选组合各指标均优于商品微生态制剂和空白对照,其中溶解氧含量显著高于商品微生态制剂EM和复合芽孢菌处理,在实验第5天对COD的降解率为95%,显著优于EM和复合芽孢菌处理的66.3%和47.9%,实验第7天对氨氮、亚硝态氮和硝态氮的降解率分别达到70%、89%和56%。  相似文献   

2.
从开封市某酒店1 200m深地热井中抽取地热水,筛选到1株较高效的好氧反硝化菌A1。对A1进行16SrRNA基因序列测定,确定A1为地衣芽孢杆菌(Bacillus licheniformis)。A1在40h内对硝态氮和TN的去除率分别为96.10%、90.60%。相比亚硝态氮,A1更容易利用硝态氮进行反硝化作用。相比甲醇,琥珀酸钠和柠檬酸钠更适合作为A1的碳源;初始pH对A1的生长量和脱氮效率影响显著,最适初始pH为7.5;A1在25~50℃下均生长良好,并保持较高的脱氮效率,但最适温度为35℃;溶解氧浓度既能影响A1的生长量和硝态氮去除率,还能影响亚硝态氮的积累量,静置培养时,虽然A1生长量不高,但是硝态氮去除率达到90.22%。可见,A1为耐高温的兼性好氧菌。  相似文献   

3.
以枯草芽孢杆菌(Bacillus subtilis)为生物吸附剂,讨论了其对Cu2+的生物吸附规律,并通过酸碱滴定这一表面分析手段,结合相关软件及傅里叶变换红外光谱(FTIR)分析了菌体表面主要的基团种类及数量.结果表明,枯草芽孢杆菌对Cu2+吸附的最佳条件是:pH为6、吸附时间为24 h,菌悬液用量和Cu2+初始浓度...  相似文献   

4.
投加硝酸钙是目前河道黑臭底泥原位治理常用的方法,然而,投加硝酸钙会造成底泥硝态氮和氨氮的过量释放,而其影响机制尚未明确。因此有必要对投加硝酸钙后硝态氮在底泥中的迁移转化规律及其促进氨氮释放的机理进行研究。结果发现,硝酸盐在间隙水的迁移距离取决于硝态氮反硝化速率,而在黑臭底泥中硫化物氧化是影响反硝化速率的关键因素。当硝酸钙投加量为20 g/kg时,硝态氮的迁移距离小于6 cm,且在14 d后消耗光;可见,通过控制硝酸钙在底泥中的投加位置可避免硝态氮的二次释放。另一方面,投加硝酸钙会促进底泥氨态氮向间隙水释放,投加当天释放率可高达101%,且会在间隙水中发生累积迁移。其中,氨氮的增加量和底泥氨态氮解吸量呈一级线性关系(r=0.986)、和硝酸钙投加量关系符合cubic曲线;据此可推测,氨氮的急剧释放与钙离子对底泥铵态氮的化学浸提有关。  相似文献   

5.
根据微生物之间协同关系的微生态理论筛选、组合获得一种由6株功能菌组成的除臭复合菌剂,该复合菌剂对粪便原位除臭效果良好,对综合恶臭的平均去除率为54.97%,最大去除率为72.95%。通过16 S r DNA、18S r DNA和26S r DNA D1/D2区序列同源性分析,菌剂中的6种微生物为罗伦隐球酵母菌(Cryptococcus laurentii)、Bacillus safensis、枯草芽孢杆菌(Bacillus subtilis)、卷枝毛霉(Mucor circinelloides)、发酵乳杆菌(Lactobacillus fermentum)和沼泽红假单胞菌(Rhodopseudomonas palustris),鉴定结果表明,复合菌剂中有酵母菌、芽孢杆菌、霉菌、乳酸菌及光合菌,这些功能菌属于当前生物除臭复合菌剂中的主流菌群。  相似文献   

6.
研究添加腐熟污泥对垃圾好氧堆肥过程中氮素转化与损失的影响,实验设置生活垃圾与腐熟污泥质量比分别为1∶1、2∶1和4∶1,以单独生活垃圾为对照,主要监测堆肥过程中固相(TN、氨氮、硝态氮和亚硝态氮)和气相(NH_3和N_2O)中氮素转化规律。结果表明:与单独生活垃圾相比,生活垃圾与腐熟污泥比例为1∶1和4∶1时,有机氮与TN损失明显减少;至堆肥结束4组堆体铵态氮与硝态氮相较于堆肥初期均有不同程度提高,其中4∶1组铵态氮与硝态氮提高最多,分别为32.3%和86.1%;亚硝态氮含量在整个堆肥过程中一直处于下降趋势;腐熟污泥的添加使物料堆肥过程中氨气和N_2O的释放量随着腐熟污泥添加量的增加而减小。总体而言,由于腐熟污泥对氨气良好的吸附性能和其含有的大量亚硝酸盐氧化菌,加入堆肥后减少反硝化途径N_2O的产生,从而减少生活垃圾堆肥过程中氮素损失和温室气体的释放。  相似文献   

7.
从城市污水处理厂的活性污泥中驯化分离出2株耐盐高效菌:地衣芽孢杆菌(Bacillus licheniformis)O1和枯草芽孢杆菌(Bacillus subtilis)Y5制备复合菌剂,用于高盐生活污水生物处理工艺快速启动研究。研究表明,在SBR系统中连续投加复合菌剂(制备的配比为1∶1),在30 d完成快速启动(TOC去除率85%),并且在整个启动过程中,TOC的去除率都能够稳定保持在80%左右,而负载复合菌剂填料的投入可获得更稳定的出水水质。通过高通量测序与OTU分类,高盐废水的配入使得活性污泥微生物群落结构发生显著改变,并且在工艺启动后,所投加的耐盐高效菌O1和Y5在活性污泥微生物总量中所占比例由1.31%升高至6.13%,说明O1和Y5能够在小试SBR中长期存留,并逐渐成为优势种属之一。  相似文献   

8.
单菌种和混合菌处理养殖污水的效果   总被引:1,自引:0,他引:1  
为了优化养殖污水处理系统中的生物膜法技术,研究了枯草芽孢杆菌(Bacillus subtilis)、酵母菌(Saccharomyces)和乳酸菌(Lactobacillus)及其混合菌对养殖污水的净化能力。实验共进行35 d,设置了8个处理组,以添加无菌生理盐水的处理组为对照组。结果表明,添加了菌种的处理组,对氨氮(NH+4-N)和亚硝氮(NO-2-N)的处理效果显著优于对照组(P0.05),混合菌组的处理效果要显著优于单菌种处理组(P0.05),其中3种菌混合的处理组效果最佳,NH+4-N和NO-2-N的去除率均达到90%以上;接种枯草芽孢杆菌的4个处理组对无机磷(TP)的去除能力要显著高于其他未接种该菌的处理组,TP的最终浓度维持在0.2 mg/L,而其他处理组在0.59 mg/L以上;添加菌种的各处理组对化学需氧量(CODMn)的去除效果差异不显著(P0.05),但均显著高于对照组(P0.05),其中3种菌混合的处理组去除率最高,达76.9%。在本实验条件下,混合菌处理污水的能力要优于单菌种,3种菌混合的处理组要优于菌种两两混合的处理组。  相似文献   

9.
本研究通过测定菌株ABT01在不同初始氮浓度、pH、C/N、温度和溶氧条件下对氨氮的去除效果,获得该菌株的最佳应用条件。实验结果表明,当初始氨氮浓度低于40 mg/L时,该菌株的氨氮去除率高达85%以上。该菌株最适脱氨氮条件均为:pH 5.0-7.0、C/N=5、35℃、摇床转速150 r/min(溶解氧5.1 mg/L),氨氮去除率最高达96.8%。同时该菌株经16S rDNA测序、细胞壁脂肪酸组成等鉴定方法,确定ABT01为枯草芽孢杆菌(Bacillus subtilis)。研究表明,枯草芽孢杆菌ABT01具有较好的氨氮去除能力,对水产养殖水质调控有潜在的应用价值。  相似文献   

10.
针对污泥中大量抗生素残留对环境的威胁和污泥资源化利用的瓶颈等问题,采用微宇宙实验手段研究了蚯蚓过腹处理污泥过程中四环素的降解特征和污泥蚓粪中大量营养元素的赋存特征。结果表明,污泥中的四环素降解率与处理时间呈正相关关系;室温静置32 d后,污泥中9%~11%的四环素发生降解。蚯蚓过腹处理下,污泥中四环素浓度与四环素降解率呈负相关关系,随着污泥中四环素浓度的增加,四环素降解率逐渐降低,蚯蚓过腹处理32 d后,污泥中四环素的降解率提升了45%~64%。蚯蚓过腹形成的污泥蚓粪中总氮和有机质含量显著减低,而铵态氮、硝态氮、速效磷、速效钾和总钾含量以及pH和电导率均显著升高;随着污泥中四环素浓度的增加,污泥蚓粪中总氮和氨氮含量以及pH和电导率呈显著降低趋势;污泥蚓粪中铵态氮和硝态氮含量、pH和电导率与四环素降解率均呈正相关关系。蚯蚓过腹处理能够显著提升污泥中四环素的降解率及污泥蚓粪中速效氮磷钾的含量。  相似文献   

11.
微生物生理群在猪粪秸秆高温堆肥碳氮转化中的作用   总被引:9,自引:0,他引:9  
在自制的强制通风静态堆肥反应箱中,猪粪与秸秆以鲜重7∶1的比例进行了堆肥化实验,在堆制的23 d里根据堆温变化分阶段采集堆肥样品,利用MPN法测定了堆料中纤维素分解菌和氮素微生物生理群的数量变化,同时测定了相应的碳、氮含量。结果表明,纤维素分解菌在稳定腐熟阶段较多,对于后期有机碳的降解和腐殖质含量的增大起了很大的作用,在堆制的23 d里,腐殖质增加了2.4%。整个堆制过程中,氨化细菌的数量最大且与氨气释放浓度和铵态氮含量呈显著正相关,都在高温期增加,降温期后减少,氨化细菌的数量在高温期的增加率远高于降温期后的减少率,而铵态氮在高温期的增加率远低于在降温后期的减少率,铵态氮总体上减少了74.1%;亚硝化细菌数量与硝态氮呈正相关;反硝化细菌数量在降温期上升幅度较大,堆制结束时为堆制初期的13倍,且与堆肥中硝态氮含量呈正相关;硝态氮含量增加了87.5%;堆肥后期硝态氮的增加可能与堆肥中存在能进行硝化作用的反硝化细菌有关。固氮菌数量在堆制结束时达堆制初期的2.61倍,主要在降温期增加较多,对堆肥中有机氮的形成起很大作用。  相似文献   

12.
溶解氧对河流底泥中三氮释放的影响   总被引:11,自引:1,他引:10  
作为内源污染的底泥沉积物中营养物的释放引起了越来越多的关注。通过大型静态土柱模拟实验,研究氮在上覆水和孔隙水中的分布特性和释放特性。在控制氧气条件、底泥有机质含量和粒径大小的条件下,连续观测氨态氮、亚硝态氮和硝态氮的浓度及其垂向分布特性。结果发现:时间分布上,通氧条件明显影响水体底泥中三氮释放与反硝化作用达到平衡的时间;垂向分布上,三期实验的上覆水的无机氮以氨态氮为主,不同的通氧条件下,各柱的孔隙水的三氮浓度比上覆水高,且三氮在沉积物中随深度增加而增加;氨态氮和硝态氮浓度则以孔隙水的为高,随深度增加而增加;低溶解氧水平加快底泥释放氨氮速度和增大释放量。  相似文献   

13.
生物修复技术削减途经土壤中的硝态氮是一种环境友好且生态效益高的方法。构建了含不同填料的A (土壤)、B (土壤+木屑)、C (土壤+木屑+蜡样芽孢杆菌)、D (土壤+木屑+土著反硝化菌) 4种渗透反应柱,将从土壤填料中筛选出单株具有良好反硝化性能的土著反硝化菌(Pseudomonas sp.P10)和来源于湖泊底泥的反硝化菌蜡样芽孢杆菌分别接种至渗透反应柱,探究土著反硝化菌对巢湖流域同源水稻田土壤填充渗透反应柱脱氮效果的影响。结果表明,向反应柱中接种土著反硝化菌Pseudomonas sp.P10可缩短反应柱去除NO3--N的启动时间,填料为土壤与木屑的B柱对NO3--N去除率可达96.05%。接种土著反硝化菌的D柱出现了NH4+-N积累现象,B、C、D柱中积累的[NO2--N]均低于2.4 mg·L-1。在30 mg·L-1和50 mg·L-1的...  相似文献   

14.
以从采自温州西片污水处理厂的活性污泥样品中分离的好氧反硝化门多萨假单胞菌(Pseudmonas mendocina)WZUF20为受试对象,以聚乙烯醇(PVA)-海藻酸钙-活性炭包埋固定化,研究游离和固定化细胞在人工硝态氮污水中好氧反硝化去除硝态氮的条件,以及它们对人工氨氮、硝态氮和亚硝态氮污水的氨氮、硝态氮和亚硝态氮的去除能力。结果表明:(1)游离细胞和固定化细胞去除硝态氮的适宜条件是相似的,适宜碳源为丁二酸钠、乙酸钠和柠檬酸钠,适宜碳源和KNO3质量比为10∶1,适宜温度、转速和pH分别为20~35℃、100~200r/min和6.0~9.5;(2)在适宜条件下,游离细胞和固定化细胞对人工氨氮污水氨氮的去除速率分别为8.79、1.67mg/(L·h),对人工硝态氮污水硝态氮的去除速率分别为8.17、4.54mg/(L·h),对人工亚硝态氮污水亚硝态氮的去除速率分别为16.42、7.67mg/(L·h);(3)在人工硝态氮污水中连续5批次的去硝态氮试验表明,PVA-海藻酸钙-活性炭固定化细胞是稳定的。说明门多萨假单胞菌(Pseudmonas mendocina)WZUF20以及PVA-海藻酸钙-活性炭包埋制备的固定化细胞具有应用于实际废水脱氮的潜力。  相似文献   

15.
从集约化养猪废水生物处理SBR的活性污泥中分离到3株高效降解17β-雌二醇(E2)的菌株,分别命名为ha、chs和hc。研究表明,这3株菌以E2为惟一碳源,在4 d内对初始浓度为1 mg/L E2的降解率为70%~95%。25℃条件下菌ha、chs和hc的一级反应动力学常数分别为0.0086、0.072和0.013。在温度为37℃时,3株菌的降解效率最高,在高浓度的氨氮和碱性pH的条件下,这3株菌均存在降解作用。其中,pH 9.05时,一级动力学常数菌ha降至0.0066,菌chs升至0.076,菌hc降至0.012。同时,在添加C源后,对降解有促进作用,并且C/N比在15∶1时降解效果较好。3株菌的一级反应动力学常数分别升到0.027、0.73和0.021。经16S rRNA基因序列分析鉴定为枯草芽孢肝菌(Bacillus subtilis)。  相似文献   

16.
以乙酸钠为碳源,采用序批实验研究低C/N比污水在不同温度反硝化过程中的亚硝态氮累积规律。研究结果表明,不同温度下低C/N比污水均能在反硝化过程中累积亚硝态氮。在同一温度下,随着初始C/N比增加,亚硝态氮最大累积率随之增加,温度为15℃时亚硝态氮最大累积率增幅最大,C/N比为1.03时,亚硝态氮最大累积率仅为18.8%,而C/N比为4.16时,亚硝态氮最大累积率高达83.9%;在同一水平的C/N比下,随着温度升高,亚硝态氮最大累积率也随之呈增加的趋势;当C/N比为1左右,温度从15℃上升到25℃时,亚硝态氮最大累积率从18.8%上升到51.7%;在较高温度、较高C/N比下,反应初期由于乙酸钠具有一定弱碱性导致系统pH迅速上升,随着硝态氮逐渐还原成亚硝态氮,乙酸钠被分解成CO_2,pH逐渐下降,待硝酸盐完全去除,进一步发生亚硝态氮还原,系统pH再次上升。  相似文献   

17.
以枯草芽孢杆菌芽孢为模型微生物,研究了实际水体中单独氯消毒、单独臭氧消毒和臭氧-自由氯联合作用的灭菌效果.结果表明,枯草芽孢杆菌芽孢对单独氯消毒的抗性很大,6 mg/L氯作用240 min后灭活率仅为0.84个对数级;臭氧对枯草芽孢杆菌芽孢有较好的灭活效果,臭氧作用5 min,对其有4.68个对数级的灭活率.与单独氯消...  相似文献   

18.
为明确蜡状芽孢杆菌(Bacillus cereus)混合菌株对毒死蜱的降解效果,采用正交实验的方法构建混合菌。以混合菌对毒死蜱的降解率和菌株的生长量为依据,利用单一因素实验考察了不同因素对混合菌降解毒死蜱的影响。结果表明:构建的混合菌中三菌株的体积比为1∶1∶3。在含80 mg/L毒死蜱的反应体系中,最适接菌量为8%(V/V),最适pH为7。在实验浓度下,混合菌对毒死蜱的降解符合一级动力学方程。混合菌对盐分有较高的耐受度,当反应液中氯化钠浓度在20~100 g/L之间时,混合菌对80 mg/L毒死蜱的降解率最高达61%。  相似文献   

19.
油气开发过程含油废液中过高的盐含量是影响其生物处理效果不佳的一个重要因素。针对含油废液的特点,实验从油田废弃泥浆中筛选分离出一株高效嗜盐降解菌,该菌呈杆状,经BIOLOG鉴定系统与分子序列鉴定分析,该菌为芽孢杆菌Bacillus subtilis strain;研究了嗜盐菌的耐盐碱性及原油降解性能,结果表明,该菌适宜于碱性环境,适盐浓度范围为5 000~200 000 mg/L,7 d内对高盐含油模拟废水中原油的降解率高达60%,最佳降解条件为:菌液/培养液体积比1∶12.5,pH=9,NaCl浓度范围为10 000~50 000 mg/L,最佳N源和P源分别为(NH2)2CO和K2HPO4·3H2O。嗜盐菌的研究为高盐含油废液的生物处理拓展了一条新的技术途径。  相似文献   

20.
聚合物驱采出水中聚丙烯酰胺的微生物联合降解作用研究   总被引:2,自引:0,他引:2  
通过对2株细菌的培养降解实验研究聚丙烯酰胺(hydrolyzed polyacrylamide,HPAM)降解菌对水环境下聚丙烯酰胺的降解作用,讨论协同降解机理。2株降解聚丙烯酰胺的菌株假单胞菌CJ419、枯草芽孢杆菌FA16在初始30℃废水样品上培养,定期测量细菌生物量和HPAM降解率。培养30 d后CJ419和FA16对聚合物的降解率最大值分别达到30.4%和25%,而以1∶1比例的混合菌降解率最大值达到80.3%。对2株菌胞外各组分研究表明:混合菌降解HPAM的机理主要由胞外降解酶系水解聚合物侧链基团导致HPAM降解为小分子物质,同时生长过程中降解菌还会释放非蛋白还原性物质引发氧化反应共同参与HPAM降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号