首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用体内染毒的方法,以鲤鱼脑乙酰胆碱酯酶(AchE)活力为指标,研究了有机磷农药对硫磷与氯乐果、甲胺磷涕灭威之间的联合毒性效应.结果表明,这些农药之间均产生较强的协同作用,但是两种农药以不同比例加入,其产生的毒性效应有明显差别,涕灭威/对硫磷之间的协同作用要强于同类农药间的作用.  相似文献   

2.
化学物质对发光菌的联合毒性评价方法   总被引:1,自引:0,他引:1  
毒性单位法(TU)的理论基础来源于剂量加和模型(DA),目前仅在二元联合毒性评价中广泛应用。为了确定TU模型适合评价的混合物类型,实验选取5种剂量效应曲线类型不同的物质,采用微板光度计测试了一元、二元混合物对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的急性毒性。根据物质的剂量效应曲线形状将物质分为A、B、C 3类,利用毒性单位法(TU)和联合作用定义法分别对AA类、AB类、AC类、BC类混合物进行分析。结果表明,TU法仅适合于由剂量效应曲线接近直线的物质组成的混合物进行联合毒性的评价。以效应为基准、TU模型为框架建立了TU’模型,该模型可以满足对任何类型已知成分的混合物或者未知成分的实际水样之间的多元联合作用的评价。  相似文献   

3.
The toxicity of aqueous solutions saturated with mixtures of hydrophobic organic liquids is contrasted to that of solutions prepared from solids. Data for a variety of mixtures are presented and are related to the solubilities of the components. It is shown that in the absence of biological interactive effects, the toxicity of a component in a saturated mixture of liquids will be equal to or less than that of a corresponding solution of its most toxic component. In contrast, for solutions derived from a mixture of solids, the toxicity will equal or exceed that of a corresponding saturated solution of its most toxic component, and will tend to increase with the complexity of the mixture.  相似文献   

4.
Lin Z  Du J  Yin K  Wang L  Yu H 《Chemosphere》2004,54(11):1691-1701
According to the toxicity mechanism of the individual chemicals, the concentration addition toxicity mechanism is revealed for nonpolar-narcotic-chemical mixtures, polar-narcotic-chemical mixtures and reactive-chemical mixtures, respectively. For nonpolar-narcotic-chemical mixtures, the partitioning of individual chemicals from water to biophase was determined, and the result shows that their concentration additive effect results from no competitive partitioning among individual chemicals. For polar-narcotic-chemical mixtures, their toxicity are contributed by two factors (the total baseline toxicity and the hydrogen bond donor activity of individual chemicals), and it is the concentration additive effect for either of these two factors that leads to their concentration addition toxicity. In addition, the interactions between the reactive chemicals and the biological macromolecules are discussed thoroughly. The results suggest that the net effect of these interactions is zero, and it is this zero net effect that leads to the concentration addition toxicity mechanism for reactive-chemical mixtures.  相似文献   

5.
分别测定了苯酚、硝基苯和间硝基苯胺对发光菌的单一毒性,以及等浓度配比和等毒性配比的二元及三元混合体系的联合毒性,采用相加指数法对其联合效应进行了评价。结果表明,等浓度比和等毒性比混合体系的联合作用结果一致:苯酚+间硝基苯胺二元体系为协同作用,其他各体系为相加作用。为简化联合毒性实验方法,建议在研究相关系列化合物的联合毒性作用机制中,可采用等浓度配比方法。  相似文献   

6.
分别测定了苯酚、硝基苯和间硝基苯胺对发光菌的单一毒性,以及等浓度配比和等毒性配比的二元及三元混合体系的联合毒性,采用相加指数法对其联合效应进行了评价。结果表明,等浓度比和等毒性比混合体系的联合作用结果一致:苯酚+间硝基苯胺二元体系为协同作用,其他各体系为相加作用。为简化联合毒性实验方法,建议在研究相关系列化合物的联合毒性作用机制中,可采用等浓度配比方法。  相似文献   

7.
Prediction of mixture toxicity with its total hydrophobicity   总被引:5,自引:0,他引:5  
Lin Z  Yu H  Wei D  Wang G  Feng J  Wang L 《Chemosphere》2002,46(2):305-310
Based on the C18 Empore disk/water partition coefficient of a mixture, quantitative structure-activity relationships (QSARs) are presented, which are used to predict the toxicity of mixed halogenated benzenes to P. phosphoreum. The predicted toxicity of 10 other related mixtures based on the QSAR model, agree well with the observed data with r2 = 0.973, SE = 0.113 and F = 287.785 at a level of significance P < 0.0001. The joint effect of these chemicals is simple similar action and the toxicity of the mixtures can be predicted from total hydrophobicity and is independent of hydrophobicity of the components or the ratio of the individual chemicals.  相似文献   

8.

Purpose

In the assessment of health risks of environmental pollutants, the method of dose addition and the method of independent action are used to assess mixture effects when no synergistic and/or antagonistic effects are present. Currently, no method exists to quantify synergistic and/or antagonistic effects for mixtures. The purpose of this paper is to develop the theoretical concepts of an overall risk probability (ORP)-based method to quantify the synergistic and antagonistic effects in health risk assessment for mixtures.

Method

The ORP for health effects of environmental chemicals was determined from the cumulative probabilities of exposure and effects. This method was used to calculate the ORP for independent mixtures and for mixtures with synergistic and antagonistic effects.

Results

For the independent mixtures, a mixture ORP can be calculated from the product of the ORPs of individual components. For systems of interacting mixtures, a synergistic coefficient and an antagonistic coefficient were defined respectively to quantify the ORPs of each individual component in the mixture. The component ORPs with synergistic and/or antagonistic effects were then used to calculate the total ORP for the mixture.

Conclusions

An ORP-based method was developed to quantify synergistic and antagonistic effects in health risk assessment for mixtures. This represents a first method to generally quantify mixture effects of interacting toxicants.  相似文献   

9.
To date, toxicological studies of endocrine disrupting chemicals (EDCs) have typically focused on single chemical exposures and associated effects. However, exposure to EDCs mixtures in the environment is common. Antiandrogens represent a group of EDCs, which draw increasing attention due to their resultant demasculinization and sexual disruption of aquatic organisms. Although there are a number of in vivo and in vitro studies investigating the combined effects of antiandrogen mixtures, these studies are mainly on selected model compounds such as flutamide, procymidone, and vinclozolin. The aim of the present study is to investigate the combined antiandrogenic effects of parabens, which are widely used antiandrogens in industrial and domestic commodities. A yeast-based human androgen receptor (hAR) assay (YAS) was applied to assess the antiandrogenic activities of n-propylparaben (nPrP), iso-propylparaben (iPrP), methylparaben (MeP), and 4-n-pentylphenol (PeP), as well as the binary mixtures of nPrP with each of the other three antiandrogens. All of the four compounds could exhibit antiandrogenic activity via the hAR. A linear interaction model was applied to quantitatively analyze the interaction between nPrP and each of the other three antiandrogens. The isoboles method was modified to show the variation of combined effects as the concentrations of mixed antiandrogens were changed. Graphs were constructed to show isoeffective curves of three binary mixtures based on the fitted linear interaction model and to evaluate the interaction of the mixed antiandrogens (synergism or antagonism). The combined effect of equimolar combinations of the three mixtures was also considered with the nonlinear isoboles method. The main effect parameters and interaction effect parameters in the linear interaction models of the three mixtures were different from zero. The results showed that any two antiandrogens in their binary mixtures tended to exert equal antiandrogenic activity in the linear concentration ranges. The antiandrogenicity of the binary mixture and the concentration of nPrP were fitted to a sigmoidal model if the concentrations of the other antiandrogens (iPrP, MeP, and PeP) in the mixture were lower than the AR saturation concentrations. Some concave isoboles above the additivity line appeared in all the three mixtures. There were some synergistic effects of the binary mixture of nPrP and MeP at low concentrations in the linear concentration ranges. Interesting, when the antiandrogens concentrations approached the saturation, the interaction between chemicals were antagonistic for all the three mixtures tested. When the toxicity of the three mixtures was assessed using nonlinear isoboles, only antagonism was observed for equimolar combinations of nPrP and iPrP as the concentrations were increased from the no-observed-effect-concentration (NOEC) to effective concentration of 80 %. In addition, the interactions were changed from synergistic to antagonistic as effective concentrations were increased in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP. The combined effects of three binary antiandrogens mixtures in the linear ranges were successfully evaluated by curve fitting and isoboles. The combined effects of specific binary mixtures varied depending on the concentrations of the chemicals in the mixtures. At low concentrations in the linear concentration ranges, there was synergistic interaction existing in the binary mixture of nPrP and MeP. The interaction tended to be antagonistic as the antiandrogens approached saturation concentrations in mixtures of nPrP with each of the other three antiandrogens. The synergistic interaction was also found in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP, at low concentrations with another method of nonlinear isoboles. The mixture activities of binary antiandrogens had a tendency towards antagonism at high concentrations and synergism at low concentrations.  相似文献   

10.
Hydrophobicity is an important property in risk assessment of chemicals. A group parameter that reflects the hydrophobicity of technical mixtures is not yet available. However, many substances are complex organic mixtures, for which it is practically impossible to determine each component separately. An experimental procedure to measure the hydrophobicity of organic mixtures without knowledge of the individual components was developed and tested for a mixture of benzene and twelve chlorobenzenes. This procedure is based on separation of the mixture into fractions of increasing hydrophobicity by reversed-phase HPLC, after which the total molar concentration in each fraction is determined by vapour pressure osmometry. The obtained information on hydrophobicity can be used for assessing bioaccumulation and sediment sorption after emission of the mixture to water has occurred.  相似文献   

11.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   

12.
Lin Z  Kong D  Zhong P  Yin K  Dong L 《Chemosphere》2005,58(9):1301-1306
We studied the influence of hydroxypropylcyclodextrins (HPCDs) on the toxicity of some mixtures. Using the Photobacterium phosphoreum toxicity test, the joint toxicological effect for Mixture I (containing p-nitrobenzaldehyde and 1-nitronaphthalene) and Mixture II (containing p-nitrobenzaldehyde and malononitrile) were determined in water and in aqueous solutions of HPCDs. The results indicate that, although the toxicological joint effect for Mixture I (simple addition) differs from that of Mixture II (synergism), alpha- and beta-HPCD can significantly reduce the toxicity of the test compounds, whereas gamma-HPCD has only a slight effect. Explanations for these observations are given that invoke the molecular structure of the individual chemicals as well as the structures of HPCDs. This provides information to assist the application of HPCDs in remediation of environmental pollution.  相似文献   

13.
Photooxidation of lower-reactivity paraffinic hydrocarbons with nitrogen oxide was investigated. Maximum oxidant yield occurred at much lower ratios of hydrocarbon to nitrogen oxide than in more reactive systems such as propylene-nitrogen oxide mixtures. Appreciable oxidant yields were obtained even from irradiation of propane-nitrogen oxide mixtures at low ratios of nitrogen oxide to propane. These results, and nitrogen dioxide and oxidant dosages computed from these measurements, substantiate the importance of reactivity characteristics in formulation of decisions on control of hydrocarbons and nitrogen oxides.  相似文献   

14.
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose–response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2n factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (10%, class-I) and moderately (10 < d  30%, class-II), highly (30 < d  50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.  相似文献   

15.
Compound contamination and toxicity interaction necessitate the development of models that have an insight into the combined toxicity of chemicals. In this paper, a novel and simple model dependent only on the mixture information (MIM), was developed. Firstly, the concentration-response data of seven groups of binary and multi-component (pseudo-binary) mixtures with different mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis. Then, a desirable non-linear function was selected to fit the data. It was found that there are good linear correlations between the location parameter (α) and mixture ratio (p) of a component and between the steepness (β) and p. Based on the correlations, a mixture toxicity model independent of pure component toxicity profiles was built. The model can be used to accurately estimate the toxicities of the seven groups of mixtures, which greatly simplified the predictive procedure of the combined toxicity.  相似文献   

16.
Inhibition of gap junctional intercellular communication (GJIC) is affiliated with tumor promotion process and it has been employed as an in vitro biomarker for evaluation of tumor promoting effects of chemicals. In the present study we investigated combined effects of anthropogenic environmental contaminants 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) and fluoranthene, cyanotoxins microcystin-LR and cylindrospermopsin, and extracts of laboratory cultures of cyanobacteria Aphanizomenon gracile and Cylindrospermopsis raciborskii, on GJIC in the rat liver epithelial cell line WB-F344. Binary mixtures of PCB 153 with fluoranthene and the mixtures of the two cyanobacterial strains elicited simple additive effects on GJIC after 30 min exposure, whereas microcystin-LR and cylindrospermopsin neither inhibited GJIC nor altered effects of PCB 153 or fluoranthene. However, synergistic effects were observed in the cells exposed to binary mixtures of anthropogenic contaminants (PCB 153 or fluoranthene) and cyanobacterial extracts. The synergistic effects were especially pronounced after prolonged (6-24 h) co-exposure to fluoranthene and A. gracile extract, when mixture caused nearly complete GJIC inhibition, while none of the individual components caused any downregulation of GJIC at the same concentration and exposure time. The effects of cyanobacterial extracts were independent of microcystin-LR or cylindrospermopsin, which were not detected in cyanobacterial biomass. It provides further evidence on the presence of unknown tumor promoting metabolites in cyanobacteria. Clear potentiation of the GJIC inhibition observed in the mixtures of two anthropogenic contaminants and cyanobacteria highlight the importance of combined toxic effects of chemicals in complex environmental mixtures.  相似文献   

17.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

18.
The Agency for Toxic Substances and Disease Registry (ATSDR) has a program for chemical mixtures that encompasses research on chemical mixtures toxicity, health risk assessment, and development of innovative computational methods. ATSDR prepared a guidance document that instructs users on how to conduct health risk assessment on chemical mixtures (Guidance Manual for the Assessment of Joint Toxic Action of Chemical Mixtures). ATSDR also developed six interaction profiles for chemical mixtures. Two profiles were developed for persistent environmental chemicals that are often found in contaminated fish and also can be detected in human breast milk. The mixture included chlorinated dibenzo-p-dioxins, hexachlorobenzene, dichlorodiphenyl dichloroethane, methyl mercury, and polychlorinated biphenyls. Two profiles each were developed for mixtures of metals and mixtures of volatile organic chemicals (VOCs) that are frequently found at hazardous waste sites. The two metal profiles dealt with (a) lead, manganese, zinc, and copper; and (b) arsenic, cadmium, chromium, and lead; the two VOCs mixtures dealt with (a) 1,1,1-trichloroethane, 1,1-dichloroethane, trichloroethylene, and tetrachloroethylene; and (b) benzene, ethylbenzene, toluene, and xylenes (BTEX). Weight-of-evidence methodology was used to assess the joint toxic action for most of the mixtures. Physiologically based pharmacokinetic modeling was used for BTEX. In most cases, a target-organ toxicity dose modification of the hazard index approach is recommended for conducting exposure-based assessments of noncancer health hazards.  相似文献   

19.
The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity.  相似文献   

20.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号