首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.  相似文献   

2.
The short-term effect of three broad spectrum fungicides on microbial activity, microbial biomass, soil ergosterol content, and phospholipid fatty acid (PLFA) profiles was studied. A silty clay loam soil was treated separately with captan, chlorothalonil and carbendazim at three different dosages of each fungicide. Chlorothalonil and carbendazim significantly altered soil microbial activity. However, changes in soil microbial biomass were only observed in soil treated with higher dosages of these fungicides. All dosages of fungicides significantly decreased fungal biomass as estimated by soil ergosterol content. PLFA analysis indicated that there was a shift in PLFA pattern. Higher dosages of all three fungicides decreased a straight-chain PLFA 22:0. In addition, soil treated with carbendazim increased cyclopropyl fatty acids. Compared to untreated soil, higher dosages of both captan and chlorothalonil affected PLFA 10Me 16:0, indicating that these fungicides can reduce actinomycetes population. Finally, our results suggest that application of both captan and chlorothalonil decreased Gram-positive to Gram-negative ratio.  相似文献   

3.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

4.
The relationship among sugar concentrations, microbial community and physical variables (precipitation and soil temperature) was investigated in a ryegrass soil from January 2004 to January 2005. Mono- and disaccharide sugars were extracted using a mixture of dichloromethane and methanol and analyzed as their TMS derivatives by GC-MS. Changes in microbial community were assessed using phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) analysis. The results of a one-year study showed that the seasonal variability of sugar contents found in the soil samples is mainly related to biomass or nutritional status of the fungal community. The increase in sucrose and fructose exudation by plant roots in the beginning of the growing season (early spring) may be responsible for the highest fungal biomass amount (PLFAs) observed in this study. Fungal storage lipid abundances (NLFAs) peaked in summer, during the same period that the highest concentrations of mannitol and trehalose were detected. This is consistent with these two sugars being stress-induced fungal metabolites, produced due to the low soil moisture observed during this season. In contrast, bacterial community growth seems to be more dependent on plant substrate than on physical variables, since the strongest decrease in bacterial biomass amounts (PLFAs) was found after cutting of the ryegrass field in early July.  相似文献   

5.
Fates and transport of PPCPs in soil receiving reclaimed water irrigation   总被引:1,自引:0,他引:1  
Fates and transport of 9 commonly found PPCPs of the reclaimed water were simulated based on the HYDRUS-1D software that was validated with data generated from field experiments. Under the default scenario in which the model parameters and input data represented the typical conditions of turf grass irrigation in southern California, the adsorption, degradation, and volatilization of clofibric acid, ibuprofen, 4-tert-octylphenol, 4-n-nonylphenol, naproxen, triclosan, diclofenac sodium, bisphenol A and estrone in the receiving soils were tracked for 10 years. At the end, their accumulations in the 90 cm soil profile varied from less than 1 ng g−1 to about 140 ng g−1 and their concentrations in the drainage water in the 90 cm soil depth varied from nil to μg L−1 levels. The adsorption and microbial degradation processes interacted to contain the PPCPs entirely within surface 40 cm of the soil profiles. Leaching and volatilization were not significant processes governing the PPCPs in the soils. The extent of accumulations in the soils did not appear to produce undue ecological risks to the soil biota. PPCPs did not represent any potential environmental harm in reclaimed water irrigation.  相似文献   

6.
Phospholipid fatty acid (PLFA) analysis has gained great importance in the study of soil microbial community structure. This structure can give indication of the soil status. Purpose of the present paper is to analyse PLFA patterns in altered agricultural soils in order to develop a soil status alteration index. Soils subjected either to intensive agricultural exploitation, or to overflow by municipal and industrial wastes, or to irrigation with saline waters were analysed for PLFA content and compared to adjacent untreated soils by means of different statistical techniques.

Principal component analysis separated PLFAs in three groups: unsaturated PLFAs (first axis, 48% of total variance), monounsaturated and cyclopropane PLFAs (second axis, 28% of total variance) and polyunsaturated PLFAs (third axis, 24% of total variance).

By means of canonical discriminant analysis, a soil alteration index (SAI) was produced from 15 PLFAs using two data sets. A third data set was used to test the SAI general validity together with other data sets reported in literature. The index validity was confirmed in most cases: SAI gave higher scores for control soils and was generally able to classify soils according to their reported degree of alteration.  相似文献   


7.
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H+ and Al3+ and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg?1soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H+ and Al3+. Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.  相似文献   

8.
The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring 14C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and 14C-compounds mineralizing activity). Mineralization of 14C-chlordecone was inferior below 1 % of initial 14C-activity. Less than 2 % of 14C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial 14C-activity). Only 23 % of the remaining 14C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of 14C-sodium acetate and 14C-2,4-d was insensitive to chlordecone exposure in silty loam soil. However, mineralization of 14C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.  相似文献   

9.
Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p ≤ 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils.  相似文献   

10.
Triclopyr is a commonly used herbicide in the control of woody plants and can exhibit toxic effects to soil microorganisms. However, the impact on soils invaded by plant exotics has not yet been addressed. Here, we present the results of an 18-month field study conducted to evaluate the impact of triclopyr on the structure of fungal and bacterial communities in soils invaded by Acacia dealbata Link, through the use of denature gradient gel electrophoresis. After triclopyr application, analyses of bacterial fingerprints suggested a change in the structure of the soil bacterial community, whereas the structure of the soil fungal community remained unaltered. Bacterial density and F:B ratio values changed across the year but were not altered due to herbicide spraying. On the contrary, fungal diversity was increased in plots sprayed with triclopyr 5 months after the first application. Richness and diversity (H´) of both bacteria and fungi were not modified after triclopyr application.  相似文献   

11.
The effect of zinc on soil nitrification and composition of the microbial community in soil was investigated using a full factorial experiment with five zinc concentrations and four levels of biological complexity (microbes only, microbes and earthworms (Eisenia fetida), microbes and Italian ryegrass (Lolium multiflorum var. Macho), and microbes, ryegrass and earthworms). After 6 weeks of exposure, the activity of soil nitrifying bacteria was measured and the microbial community structure was characterized by phospholipid fatty acid (PLFA) analysis. Soil nitrification and several PLFA markers were significantly influenced by either zinc addition and/or the presence of earthworms or ryegrass, and one of the most pronounced changes was the increase of fungi and decrease of bacteria with increasing concentrations of zinc. Of particular interest, however, was the potential interaction between the presence of plants and/or earthworms and the effect of zinc, which the factorial study design allowed us to explore. Such an effect was observed in two cases: Earthworms reduced the positive effect of zinc on the fungal biomass (ANOVA, p=0.03), and the effect of earthworms on the soil nitrification activity depended on zinc concentration (ANOVA, p<0.05). The effect of earthworm presence was not very large, but it does show that multispecies tests might give information about metal toxicity or bioavailability that cannot be predicted from single-species tests.  相似文献   

12.
13.
The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.  相似文献   

14.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

15.
A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H2O2, 6 and 65 g kg−1) and FeSO4 were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected.  相似文献   

16.
To highlight the effects of a variety of chlorophenols (CP) in relation to the response of an indigenous bacterial community, an agricultural Mediterranean calcareous soil has been studied in microcosms incubated under controlled laboratory conditions. Soil samples were artificially polluted with 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP), at concentrations ranging from 0.1 up to 5000 mg kg−1. Both activity and composition of the microbial community were assessed during several weeks, respectively, by respirometric methods and PCR-DGGE analysis of extracted DNA and RNA. Significant decreases in soil respirometric values and changes in the bacterial community composition were observed at concentrations above 1000 mg kg−1 MCP and TCP, and above 100 mg kg−1 PCP. However, the persistence of several active bacterial populations in soil microcosms contaminated with high concentration of CP, as indicated by DGGE fingerprints, suggested the capacity of these native bacteria to survive in the presence of the pollutants, even without a previous adaptation or contact with them.The isolation of potential CP degraders was attempted by culture plating from microcosms incubated with high CP concentrations. Twenty-three different isolates were screened for their resistance to TCP and PCP. The most resistant isolates were identified as Kocuria palustris, Lysobacter gummosus, Bacillus sp. and Pseudomonas putida, according to 16S rRNA gene homology. In addition, these four isolates also showed the capacity to reduce the concentration of TCP and PCP from 15% to 30% after 5 d of incubation in laboratory assays (initial pollutant concentration of 50 mg L−1). Isolate ITP29, which could be a novel species of Bacillus, has been revealed as the first known member in this bacterial group with potential for CP bioremediation applications, usually wide-spread in the soil natural communities, which has not been reported to date as a CP degrader.  相似文献   

17.
Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil–plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMBC), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02–0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMBC content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.  相似文献   

18.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

19.
Slater H  Gouin T  Leigh MB 《Chemosphere》2011,84(2):199-206
Rhizosphere bioremediation of polychlorinated biphenyls (PCBs) offers a potentially inexpensive approach to remediating contaminated soils that is particularly attractive in remote regions including the Arctic. We assessed the abilities of two tree species native to Alaska, Salix alaxensis (felt-leaf willow) and Picea glauca (white spruce), to promote microbial biodegradation of PCBs via the release of phytochemicals upon fine root death. Crushed fine roots, biphenyl (PCB analogue) or salicylate (willow secondary compound) were added to microcosms containing soil spiked with PCBs and resultant PCB disappearance, soil toxicity and microbial community changes were examined. After 180 d, soil treated with willow root crushates showed a significantly greater PCB loss than untreated soils for some PCB congeners, including the toxic congeners, PCB 77, 105 and 169, and showed a similar PCB loss pattern (in both extent of degradation and congeners degraded) to biphenyl-treated microcosms. Neither P. glauca (white spruce) roots nor salicylate enhanced PCB loss, indicating that biostimulation is plant species specific and was not mediated by salicylate. Soil toxicity assessed using the Microtox bioassay indicated that the willow treatment resulted in a less toxic soil environment. Molecular microbial community analyses indicated that biphenyl and salicylate promoted shifts in microbial community structure and composition that differed distinctly from each other and from the crushed root treatments. The biphenyl utilizing bacterium, Cupriavidus spp. was isolated from the soil. The findings suggest that S. alaxensis may be an effective plant for rhizoremediation by altering microbial community structure, enhancing the loss of some PCB congeners and reducing the toxicity of the soil environment.  相似文献   

20.
Characterization of bacterial communities at heavy-metal-contaminated sites   总被引:2,自引:0,他引:2  
The microbial community in soil samples from two long-term contaminated sites was characterized by using culture-dependent and culture-independent methods. The two sites investigated contained high amounts of heavy metals and were located in the upper Silesia Industrial Region in southern Poland. The evaluation of the aerobic soil microbial population clearly demonstrated the presence of considerable numbers of viable, culturable bacteria at both sites. A high fraction of the bacterial population was able to grow in the presence of high amounts of metals, i.e. up to 10 mM Zn2+, 3 mM Pb2+ or 1 mM Cu2+. Site 1 contained significantly (P < 0.05) lower bacterial numbers growing in the presence of 10 mM Zn2+ than site 2, while the opposite was observed for bacteria tolerating 1 mM Cu2+. This coincided with the contents of these two metals at the two sites. Ecophysiological (EP) indices for copiotrophs (r-strategists) and oligotrophs (K-strategists) pointed to high bacterial diversity at both sites. Fluorescence in situ hybridization (FISH) analysis indicated that Actinobacteria and Proteobacteria represent the physiologically active fraction of bacteria at the two sites. Shannon diversity (H′) indices for FISH-detected bacterial phylogenetic groups were not significantly different at the two sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号