首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Responses of earthworm to aluminum toxicity in latosol   总被引:1,自引:0,他引:1  
Excess aluminum (Al) in soils due to acid rain leaching is toxic to water resources and harmful to soil organisms and plants. This study investigated adverse impacts of Al levels upon earthworms (Eisenia fetida) from the latosol (acidic red soil). Laboratory experiments were performed to examine the survival and avoidance of earthworms from high Al concentrations and investigate the response of earthworms upon Al toxicity at seven different Al concentrations that ranged from 0 to 300 mg kg?1 over a 28-day period. Our study showed that the rate of the earthworm survival was 100 % within the first 7 days and decreased as time elapsed, especially for the Al concentrations at 200 and 300 mg kg?1. A very good linear correlation existed between the earthworm avoidance and the soil Al concentration. There was no Al toxicity to earthworms with the Al concentration ≤50 mg kg?1, and the toxicity started with the Al concentration ≥100 mg kg?1. Low Al concentration (i.e., <50 mg kg?1) enhanced the growth of the earthworms, while high Al concentration (>100 mg kg?1) retarded the growth of the earthworms. The weight of earthworms and the uptake of Al by earthworms increased with the Al concentrations from 0 to 50 mg kg?1 and decreased with the Al concentrations from 50 to 300 mg kg?1. The protein content in the earthworms decreased with the Al concentrations from 0 to 100 mg kg?1 and increased from 100 to 300 mg kg?1. In contrast, the catalase (CAT) and superoxide dismutase (SOD) activities in the earthworms increased with the Al concentrations from 0 to 100 mg kg?1 and decreased from 100 to 300 mg kg?1. The highest CAT and SOD activities and lowest protein content were found at the Al concentration of 100 mg kg?1. Results suggest that a high level of Al content in latosol was harmful to earthworms.  相似文献   

2.
Dissipation of spiromesifen and its metabolite, spiromesifen-enol, on tomato fruit, tomato leaf, and soil was studied in the open field and controlled environmental conditions. Sample preparation was carried out by QuEChERS method and analysis using LC-MS/MS. Method validation for analysis of the compounds was carried out as per “single laboratory method validation guidelines.” Method validation studies gave satisfactory recoveries for spiromesifen and spiromesifen-enol (71.59–105.3%) with relative standard deviation (RSD) < 20%. LOD and LOQ of the method were 0.0015 μg mL?1 and 0.005 mg kg?1, respectively. Spiromesifen residues on tomato fruits were 0.855 and 1.545 mg kg?1 in open field and 0.976 and 1.670 mg kg?1 under polyhouse condition, from treatments at the standard and double doses of 125 and 250 g a.i. ha?1, respectively. On tomato leaves, the residues were 5.64 and 8.226 mg kg?1 in open field and 6.874 and 10.187 mg kg?1 in the polyhouse. In soil, the residues were 0.532 and 1.032 mg kg?1 and 0.486 and 0.925 mg kg?1 under open field and polyhouse conditions, respectively. The half-life of degradation of spiromesifen on tomato fruit was 6–6.5 days in the open field and 8.1–9.3 days in the polyhouse. On tomato leaves, it was 7–7.6 and 17.6–18.4 days and in soil 5.6–7.4 and 8.4–9.5 days, respectively. Metabolite, spiromesifen-enol, was not detected in any of the sample throughout the study period. Photodegradation could be the major route for dissipation of spiromesifen in the tomato leaves, whereas in the fruits, it may be the combination of photodegradation and dilution due to fruit growth. The results of the study can be utilized for application of spiromesifen in plant protection of tomato crop under protected environmental conditions.  相似文献   

3.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

4.
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg?1 Cd), Zn (150–2,400 mg kg?1 Zn) or Cd + Zn (20?+?150, 40?+?300, 80?+?600 mg kg?1). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g?1 for Cd and 1,300 μg g?1 for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg?1 Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.  相似文献   

5.
The main purpose of this study was to determine typical concentrations of heavy metals (HM) in wood from willows and poplars, in order to test the feasibility of phytoscreening and phytoextraction of HM. Samples were taken from one strongly, one moderately, and one slightly polluted site and from three reference sites. Wood from both tree species had similar background concentrations at 0.5 mg kg?1 for cadmium (Cd), 1.6 mg kg?1 for copper (Cu), 0.3 mg kg?1 for nickel (Ni), and 25 mg kg?1 for zinc (Zn). Concentrations of chromium (Cr) and lead (Pb) were below or close to detection limit. Concentrations in wood from the highly polluted site were significantly elevated, compared to references, in particular for willow. The conclusion from these results is that tree coring could be used successfully to identify strongly heavy metal-polluted soil for Cd, Cu, Ni, Zn, and that willow trees were superior to poplars, except when screening for Ni. Phytoextraction of HMs was quantified from measured concentration in wood at the most polluted site. Extraction efficiencies were best for willows and Cd, but below 0.5 % over 10 years, and below 1?‰ in 10 years for all other HMs.  相似文献   

6.
This study investigated potential nitrogen fixation, net nitrification, and denitrification responses to short-term crude oil exposure that simulated oil exposure in Juncus roemerianus salt marsh sediments previously impacted following the Deepwater Horizon accident. Temperature as well as crude oil amount and type affected the nitrogen cycling rates. Total nitrogen fixation rates increased 44 and 194 % at 30 °C in 4,000 mg kg?1 tar ball and 10,000 mg kg?1 moderately weathered crude oil treatments, respectively; however, there was no difference from the controls at 10 and 20 °C. Net nitrification rates showed production at 20 °C and consumption at 10 and 30 °C in all oil treatments and controls. Potential denitrification rates were higher than controls in the 10 and 30?ºC treatments but responded differently to the oil type and amount. The highest rates of potential denitrification (12.7?±?1.0 nmol N g?1 wet h?1) were observed in the highly weathered 4,000 mg kg?1 oil treatment at 30 °C, suggesting increased rates of denitrification during the warmer summer months. These results indicate that the impacts on nitrogen cycling from a recurring oil spill could depend on the time of the year as well as the amount and type of oil contaminating the marsh. The study provides evidence for impact on nitrogen cycling in coastal marshes that are vulnerable to repeated hydrocarbon exposure.  相似文献   

7.
Spatial distribution of mercury in topsoil from five regions of China   总被引:1,自引:0,他引:1  
The concentrations and distributions of mercury (Hg) in topsoil from four provinces and one municipality in China were investigated. A total of 1,254 samples were collected and analyzed. The average concentrations of Hg were 0.064 mg kg?1 for Liaoning Province, 0.100 mg kg?1 for Jiangsu Province, 0.110 mg kg?1 for Zhejiang Province, 0.154 mg kg?1 for Sichuan Province, and 0.098 mg kg?1 for Chongqing Municipality. Although differences were found among the ranges of Hg concentrations, the average values for each region were similar with other published data. The concentrations of Hg in topsoil varied largely upon the sampling locations. More than 80 % of the soil samples from Liaoning Province, Jiangsu Province, Zhejiang Province, and Chongqing Municipality, were ranked Grade I by the China Environmental Quality Standard for Soils, which can be considered as not contaminated by Hg. The concentrations of Hg in 0.3–0.4 % of soils collected from Jiangsu Province, Zhejiang Province and Chongqing Municipality exceeded the limitation for Grade III, indicating the contamination of Hg in these sites. The sources and potential risks of Hg in these sites should be brought to attention and further investigated.  相似文献   

8.
The variability of mercury (Hg) levels in Swedish freshwater fish during almost 50 years was assessed based on a compilation of 44 927 observations from 2881 waters. To obtain comparable values, individual Hg concentrations of fish from any species and of any size were normalized to correspond to a standard 1-kg pike [median: 0.69 mg kg?1 wet weight (ww), mean ± SD: 0.84 ± 0.67 mg kg?1 ww]. The EU Environmental Quality Standard of 0.02 mg kg?1 was exceeded in all waters, while the guideline set by FAO/WHO for Hg levels in fish used for human consumption (0.5–1.0 mg kg?1) was exceeded in 52.5 % of Swedish waters after 2000. Different trend analysis approaches indicated an overall long-term decline of at least 20 % during 1965–2012 but trends did not follow any consistent regional pattern. During the latest decade (2003–2012), however, a spatial gradient has emerged with decreasing trends predominating in southwestern Sweden.  相似文献   

9.
A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr–B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by?≥?79 % in 50 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments and by?≥?86 % in 100 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg?1) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg?1 single contaminated soil and by 28 to 41 % in 10 mg kg?1B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr–B[a]P co-contaminated soil.  相似文献   

10.
Imidacloprid, a neonicotinoid insecticide, has been used widely in agriculture worldwide. The adverse effects of imidacloprid on exposed biota have brought it increasing attention. However, knowledge about the effects of imidacloprid on antioxidant defense systems and digestive systems in the earthworm is vague and not comprehensive. In the present study, the changes in the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), cellulase, reactive oxygen species (ROS), and malondialdehyde (MDA) in the earthworm Eisenia fetida exposed to artificial soil treated with imidacloprid were examined systematically. The results showed that the activity of these biomarkers was closely related to the dose and duration of the exposure to imidacloprid. The activity of SOD was stimulated significantly at doses of 0.66 and 2 mg kg?1 imidacloprid but markedly inhibited at a dose of 4 mg kg?1 imidacloprid with prolonged exposure. The activities of CAT and POD increased irregularly at 0.2–4 mg kg?1 imidacloprid over different exposure times. The level of ROS at a dose of 2 or 4 mg kg?1 imidacloprid was significantly increased over the entire exposure period. When the concentration of imidacloprid was above 0.66 mg kg?1, the balance of the activity of the antioxidant enzymes and ROS level was interrupted. The activity of cellulase decreased significantly with prolonged exposure. At the stress of 4 mg kg?1 imidacloprid, the content of MDA was significantly increased with increasing exposure time. The results of the present study suggest that imidacloprid has a potentially harmful effect on E. fetida and may be helpful for assessment of the risk of imidacloprid to the soil ecosystem environment. However, to obtain more comprehensive toxicity data, it is necessary to investigate the effects of imidacloprid on earthworm using native soils in the future work.  相似文献   

11.
To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg?1 to 34.3 mg kg?1, averaging 7.99 mg kg?1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB)?/?∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant?+?Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla?+?Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA?+?Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP?+?BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55?×?10?5 and 9.33?×?10?5, respectively.  相似文献   

12.
Crops, particularly in the Northeast region of Mexico, have to cope with increasing soil salinization due to irrigation. Chloride (Cl?) concentration has been strongly related to enhance cadmium (Cd) uptake by plants due to increased solubility in the soil solution. The effect of irrigation with slightly saline water from a local well was evaluated in this work on the accumulation and translocation of Cd in Swiss chard (Beta vulgaris L.) grown in soil historically amended with stabilized sewage sludge under a regime of phosphorus and zinc fertilization. A factorial pot experiment was conducted with two phosphate fertilizer levels (PF, 0 and 80 kg ha?1 dry soil, respectively), two Zn levels (0 and 7 kg ha?1 dry soil), and two sources of water for irrigation deionized water (DW) and slightly saline well water (WW) from an agricultural site. Additionally, a human risk assessment for Cd ingestion from plants was assessed. Results showed that Cl? salinity in the WW effectively mobilized soil Cd and increased its phytoavailability. A higher level of Cd was found in roots (46.41 mg kg?1) compared to shoots (10.75 mg kg?1). Although the total content of Cd in the edible parts of the Swiss chard irrigated with WW exceeded permissible recommended consumption limit, bioavailable cadmium in the aboveground parts of the plant in relation to the total cadmium content was in the range from 8 to 32 %. Therefore, human health risks might be overestimated when the total concentration is taken into account.  相似文献   

13.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   

14.
Effects of silicon and copper on bamboo grown hydroponically   总被引:1,自引:0,他引:1  
Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. “Malay Dwarf ” was performed. The bamboo plants were first submitted to a range of Si supplementation (0–1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 μM Cu2+ was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g?1 in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg?1), but was also found in leaves (16.6 mg kg?1) and stems (9.8 mg kg?1). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.  相似文献   

15.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

16.
The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0?×?103, 1.1?×?104, and 1.3?×?104 mg kg?1 for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6?×?104, 5.6?×?105, and 7.0?×?104 mg kg?1, respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd?+?Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.  相似文献   

17.
In this study, the effect of ciprofloxacin (CIP) on the catabolic diversity of soil microbial communities was evaluated. Soil samples were spiked with ciprofloxacin (0, 1, 5 and 50 mg?kg?1) and were incubated for 1, 3, 9, 22 and 40 days. Untreated controls received only water. The functional diversity of the microbial community studied was characterized using a catabolic response profile (CRP). Six substrate groups were tested: carbohydrates, amino acids, carboxylic acids, aromatic chemicals, alcohols and polymers. After 40 days, the CIP concentrations in the soil samples ranged from 25% to 58% of the initial concentrations. Soil respiratory responses to the individual substrates D-glucose, lactose, D-mannose, L-glutamic, Na-citrate, malic acid and inosine were inhibited at the high CIP concentrations (5 and 50 mg·kg?1) in the soils and were increased at the lowest CIP concentration (1 mg·kg?1). Soil respiration was inhibited at all of the CIP concentrations after the addition of D-galactose and glycerol. The CIP concentration and incubation time explained 45.3% of the variance of the catabolic responses. The CRP analysis clearly discriminated among the different CIP concentrations. The results suggest that CIP strongly affects the catabolic diversities of soil microbial communities and that its effect is more significant than that of incubation time.  相似文献   

18.
The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg?1 Cd and 21 mg kg?1 carbendazim; high level, 6 mg kg?1 Cd and 117 mg kg?1 carbendazim). Cd removal efficiencies were 32.3–35.1 % and 7.8–8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P?<?0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1–42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2–121.3 %, 64.2–143.4 %, and 2.4–24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil.  相似文献   

19.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

20.
Overgrowth of water chestnut (Trapa spp.) is a regional problem throughout Asia and North America because of waterway blockage and water fouling upon decomposition. In the present study, we investigated the potential of water chestnut to control cyanobacterial blooms, via a high content of phenolic compounds. In addition, we assessed the impact of biomass harvesting and crude extract application on nutrient balance. We showed that the floating parts of water chestnut contained high concentrations of total phenolics (89.2 mg g?1 dry weight) and exhibited strong antioxidant activity (1.31 mmol g?1 dry weight). Methanol-extracted phenolics inhibited growth of Microcystis aeruginosa; the half maximal effective concentration (EC50) of the extracted phenolics was 5.8 mg L?1, which was obtained from only 103 mg L?1 of dry biomass (the floating and submerged parts). However, the crude extracts also added important quantities of nitrogen, phosphorus, and potassium (1.49, 1.05, and 16.3 mg g?1, respectively; extracted dry biomass weight basis); therefore, in practice, nutrient removal before and/or after the extraction is essential. On the other hand, biomass harvesting enables recovery of nitrogen, phosphorus, and potassium from the water environment (23.1, 2.9, and 18.7 mg g?1, respectively; dry biomass weight basis). Our findings indicate that water chestnut contains high concentrations of phenolics and exhibits strong antioxidant activity. Utilization of these resources, including nutrients, will contribute to reclamation of the water environment, and also to disposal of wet biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号