首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
Fe0-厌氧微生物体系处理活性艳红X-3B的试验研究   总被引:1,自引:0,他引:1  
采用间歇式摇床试验,研究了葡萄糖共基质条件下Fe0-厌氧微生物体系中Fe0投加量、pH值、染料初始浓度对活性艳红X-3B模拟废水脱色率的影响,比较了Fe0-厌氧微生物、纯厌氧微生物及纯Fe03种体系中废水的脱色效果.结果表明:Fe0-厌氧微生物体系中初始浓度(50~500 mg/L)对活性艳红X-3B的脱色率影响不大;而Fe0投加量、pH值存在一个最佳范围;当Fe0投加量为260 mg/L,pH值为6.0,污泥浓度为0.35 g VSS/L,停留时间约为30 h时,体系中活性艳红X-3B的脱色率可达90%左右,比相同试验条件下纯Fe0、纯厌氧微生物体系达到此脱色率所需时间分别缩短了约1/2、7/10.在Fe0-厌氧微生物体系中,由紫外可见分光光度分析可推测活性艳红X-3B的脱色机理主要是其偶氮键发生断裂,生成苯胺和萘类物质,而且苯胺和萘类物质能得到进一步降解.  相似文献   

2.
还原铁粉/紫外光体系对活性艳红X-3B溶液的脱色   总被引:8,自引:0,他引:8  
研究了在紫外杀菌灯(λmax=253.7nm,30W)照射下,添加还原铁粉的活性艳红X-3B水溶液的脱色作用。当pH=3.5,铁粉投加量为2.0g/L时,20mg/L活性艳红X-3B溶液在光照180min后的脱色率为79%。脱色为动力学零级反应。染料溶液的pH、铁粉投加量、活性艳红初始浓度对脱色有影响。初步探讨了脱色反应的机理。  相似文献   

3.
低强度紫外线催化降解活性艳红X-3B溶液研究   总被引:4,自引:0,他引:4  
研究了低强度紫外线对活性艳红X-3B溶液的处理效果.考察了紫外线波长、溶液pH、起始浓度、催化剂用量、温度及曝气条件对染料降解的影响。结果表明,365nm紫外线(UV356nm)的处理效果明显优于254nm紫外线(UV254nm),反应最适pH为3.0~5.0,最佳TiO2投加量为2.0g/L,最适温度为40℃,通入空气或氧气均能加速活性艳红X-3B的降解。在上述条件下,起始浓度为50mg/L的活性艳红X-3B在150min内可完全分解。  相似文献   

4.
光助非均相Fenton体系用于活性艳红X-3B脱色的研究   总被引:3,自引:0,他引:3  
在光助非均相Fenton体系中,采用一种稀土铈-铁复合(Ce-Fe)材料作为催化剂,并探讨了该反应体系在不同条件下活性艳红X-3B的脱色效果。结果表明:该光助非均相Fenton反应在前10min符合一级反应动力学。采用掺杂0.08mol/L铈制备的Ce-Fe材料对活性艳红X-3B具有最佳的脱色效果,在pH3.0、H2O234mg/L、UV253.7nm条件下,10min内该反应体系速率常数%达到0.2456min^-1,明显高于相同条件下的UV/H2O2(0.0446min^-1)、UV/Ce-Fe(0.0306min^-1)体系的速率常数。  相似文献   

5.
采用共沉淀法合成出一系列镁铝摩尔比不同的碳酸根型水滑石(LDHs),经500℃高温煅烧制备出镁铝复合氧化物CLDH,并用X-射线、红外光谱对它们进行表征。考查了吸附剂投加量、反应时间、初始pH值等因素对LDHs和CLDH处理阴离子染料活性艳红X-3B模拟废水效果的影响,并对吸附机理进行探讨。实验结果表明:以镁铝摩尔比为3:1时制得的水滑石对活性艳红X-3B溶液的脱色效果最好。水滑石LDHs及其焙烧产物CLDH对活性艳红X-3B染料均具有较好的吸附性能,最佳反应时间分别为60min和30min;在较宽的pH范围内二者的脱色性能稳定,且CLDH对该染料的吸附效果要优于LDHs。LDHs及CLDH对活性艳红X-3B的吸附结果符合Langmuir吸附等温式,25℃下饱和吸附量分别为263.77mg/g和875.23mg/g。LDHs及CLDH的吸附机理分别为离子交换和层状结构重建。饱和吸附后的CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降。  相似文献   

6.
用高压电弧放电产生的低温等离子体对含偶氮染料的废水进行了处理,以甲基橙为例研究了电压幅值、处理时间、溶液初始浓度、溶液初始pH值、投加Fe^2+和Fe^3+对染料脱色的影响。实验结果表明,甲基橙浓度为50mg/L时其降解率随时间和电压幅值的增加而增加。溶液初始浓度对染料去除效果影响较为明显,同等条件下初始浓度越低降解率越高。酸性条件下有利于低温等离子体处理甲基橙。Fe^2+和Fe^3+对低温等离子体降解甲基橙有一定的催化作用。电压8kV处理3min,Fe^2+为20mg/L时去除率由89.64%增至99.72%。Fe2(SO4),的最佳投加量为5mg/L(以Fe^3+计),而FeCl,的最佳投加量为80mg/L(以Fe^3+计)。  相似文献   

7.
考察了pH值对“Fe^0一厌氧微生物”体系降解2,4,6,一三氯酚(2,4,6.TCP)效果的影响,结果表明:pH值是影响“Fe^0-厌氧微生物”体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe^0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe^0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe^0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe^0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe^0腐蚀。  相似文献   

8.
采用共沉淀法合成出一系列镁铝摩尔比不同的碳酸根型水滑石(LDHs),经500℃高温煅烧制备出镁铝复合氧化物CLDH,并用X-射线、红外光谱对它们进行表征。考查了吸附剂投加量、反应时间、初始pH值等因素对LDHs和CLDH处理阴离子染料活性艳红X-3B模拟废水效果的影响,并对吸附机理进行探讨。实验结果表明:以镁铝摩尔比为3∶1时制得的水滑石对活性艳红X-3B溶液的脱色效果最好。水滑石LDHs及其焙烧产物CLDH对活性艳红X-3B染料均具有较好的吸附性能,最佳反应时间分别为60 min和30 min;在较宽的pH范围内二者的脱色性能稳定,且CLDH对该染料的吸附效果要优于LDHs。LDHs及CLDH对活性艳红X-3B的吸附结果符合Langmuir吸附等温式,25℃下饱和吸附量分别为263.77 mg/g和875.23 mg/g。LDHs及CLDH的吸附机理分别为离子交换和层状结构重建。饱和吸附后的CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降。  相似文献   

9.
利用壳聚糖对金属离子的吸附和螯合作用,通过简单的液相沉淀一还原过程一步原位合成了交联壳聚糖/Cu2O复合粒子。x射线衍射(XRD)和红外(FT—IR)测试结果表明,壳聚糖与Cu2O纳米微粒能有效复合。以活性艳红X-3B溶液为模拟印染废水,采用Langmuir-Hinshelwood假一级方程模拟交联壳聚糖/Cu2O复合粒子光催化脱色反应的动力学行为,从动力学角度系统研究染料初始浓度、反应体系pH、催化剂用量和反应体系气氛等因素对复合粒子可见光催化脱色反应速率的影响。结果表明,当染料溶液浓度较低时,光催化过程可视为假一级反应。降低活性艳红X-3B初始浓度和pH,增加催化剂用量和反应体系的含O2量都可显著增加光解脱色反应速率常数。相同条件下,与纯Cu2O相比,交联壳聚糖/Cu2O复合粒子对X-3B呈现出更好的吸附性和更高的可见光催化活性。  相似文献   

10.
采用湿法制备了高铁酸钾(K2FeO4)氧化剂,研究了其对染料活性艳红X-3B(X-3B) 和分散蓝2BLN(2BLN)在不同pH条件下的脱色效果,并对Al2 (SO4)3、K2FeO4及O3对活性及分散染料的脱色效果进行了比较。结果表明:高铁酸钾对活性及分散染料的脱色效果明显, X-3B脱色率随pH的增加不断提高,2BLN脱色率在pH 6~10范围内无明显变化,在pH=5时达到最大值。在X-3B及2BLN浓度同为100 mg/L,pH分别为10、5, K2FeO4浓度分别为100 mg/L和200 mg/L时,BLN及X-3B的脱色率分别达到92.3%和87.3%。在相同条件下,K2FeO4对活性艳红X-3B的脱色效果好于Al2(SO4)3和O3; 而K2FeO4对分散蓝2BLN的脱色效果虽比Al2 (SO4)3稍差,但比臭氧的脱色效果要好。同时还研究了K2FeO4对活性及分散染料的脱色机理,结果表明: 高铁酸钾对X-3B的脱色依赖于K2FeO4的氧化作用,而对的2BLN的脱色则以絮凝为主。  相似文献   

11.
光助非均相Fenton体系用于活性艳红X-3B脱色的研究   总被引:1,自引:0,他引:1  
在光助非均相Fenton体系中,采用一种稀土铈铁复合(CeFe)材料作为催化剂,并探讨了该反应体系在不同条件下活性艳红X3B的脱色效果。结果表明:该光助非均相Fenton反应在前10min符合一级反应动力学。采用掺杂0.08mol/L铈制备的CeFe材料对活性艳红X3B具有最佳的脱色效果,在pH3.0、H2O234mg/L、UV253.7nm条件下,10min内该反应体系速率常数k达到0.2456min-1,明显高于相同条件下的UV/H2O2(0.0446min-1)、UV/CeFe(0.0306min-1)体系的速率常数。  相似文献   

12.
分别用层状氢氧化镁铝(LDH)和焙烧层状氢氧化镁铝(CLDH)作为吸附剂吸附脱除水溶液中偶氮染料酸性黑10B.考察了脱色时间、pH值、吸附剂的投加量、温度、染料初始浓度和焙烧温度等因素对脱色率的影响.结果表明,LDH及CLDH对酸性黑10B染料具有良好的脱除效果,室温下,10g/L LDH和1g/L的CLDH对浓度为100mg/L的染料的脱色率分别达95.93%和99.97%.pH值是影响吸附能力的关键因素,吸附剂对溶液pH值有一定缓冲作用.LDH及CLDH对酸性黑10B吸附结果符合Langmuir吸附等温式.饱和吸附后的LDH及CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降.  相似文献   

13.
以玻璃纤维为载体,将TiO2负载到其表面形成了空间玻璃纤维反应器,引入Fe3+作为掺杂改性离子,形成了负载TiO2/Fe^3+的空间玻璃纤维光催化反应器,并以高压汞灯为光源进行了光催化降解水中苯酚的实验研究,考察了影响苯酚光催化降解的因素,确定了在UV365-250 W光源照射下,pH为3-5,O2通入量1.0 L/(min.L),反应器内上升流速为0.7 m/min等实验条件下,初始浓度为30 mg/L的苯酚废水经120 min光催化反应后,降解率可达到85%,矿化率可达80%。  相似文献   

14.
采用负载纳米TiO2的三维镍网装配了光催化反应器,就其对酸性品红溶液进行脱色效果进行了实验研究。考察了反应器的3种装配条件、品红初始浓度、pH值、H2O2投加量、紫外光剂量等因素对酸性品红脱色效果的影响。结果表明:UV灯+镍网+TiO2模式组合的反应器脱色效果最好;在相同的处理时间内酸性品红溶液的脱色率随起始浓度的增大而减小;将酸性品红溶液pH值调至5时脱色效果最明显,70 min的脱色率可高达94.8%。脱色效果还可以通过溶液中添加H2O2和控制紫外线剂量来调节。当溶液中H2O2投加量为0.5 g/L时,处理70 min后的脱色率可高达98.3%;到达反应界面紫外光剂量越多则能够获得越高的酸性品红脱色率。  相似文献   

15.
采用负载纳米TiO2的三维镍网装配了光催化反应器,就其对酸性品红溶液进行脱色效果进行了实验研究。考察了反应器的3种装配条件、品红初始浓度、pH值、H2O2投加量、紫外光剂量等因素对酸性品红脱色效果的影响。结果表明:UV灯+镍网+TiO2模式组合的反应器脱色效果最好;在相同的处理时间内酸性品红溶液的脱色率随起始浓度的增大而减小;将酸性品红溶液pH值调至5时脱色效果最明显,70 min的脱色率可高达94.8%。脱色效果还可以通过溶液中添加H2O2和控制紫外线剂量来调节。当溶液中H2O2投加量为0.5 g/L时,处理70 min后的脱色率可高达98.3%;到达反应界面紫外光剂量越多则能够获得越高的酸性品红脱色率。  相似文献   

16.
非活体生物质对水中活性艳红X-3B的吸附研究   总被引:9,自引:3,他引:6  
研究了4种非活体生物质(米酒糟、花生壳、柚子皮、稻草秸秆)对模拟废水中活性艳红X-3B的吸附条件及吸附机理。结果表明,活性艳红X-3B初始浓度为100 mg/L、pH为1.0~2.0、吸附剂浓度为10 mg/L时,4种吸附剂对活性艳红X-3B的吸附率可达到80%。吸附在60 min左右达平衡后最大吸附量的顺序为:米酒糟(58.8 mg/g)花生壳(28.0mg/g)柚子皮(23.6 mg/g)稻草秸秆(19.5 mg/g)。在达最大吸附率时,米酒糟的用量可减少一半、pH范围可宽为1.0~6.0,且吸附量是另三者的2倍以上。综合比较,米酒糟具有较强的吸附废水中活性艳红X-3B的能力,可作为废水中活性染料的吸附剂使用。而花生壳、柚子皮和稻草秸秆的吸附能力相对较弱,不是理想的吸附材料。数学模型模拟表明,米酒糟和柚子皮的吸附过程更符合Freundlich方程,而花生壳和稻草秸秆更符合Langmuir方程;动力学研究表明4种吸附剂的吸附拟合更符合拟二级动力学方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号