首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西安南郊采暖期大气颗粒物PM2.5的污染特征分析   总被引:1,自引:1,他引:0  
为研究西安市南郊地区采暖期大气颗粒物PM2.5的污染浓度及水溶性成分,使用颗粒物采样器于2009年1月6日~2009年2月15日进行PM2.5采样.将24 h分为8个阶段,每天3 h定时采样.结果表明,西安市南郊地区采暖期PM2.5明显污染,24 h中PM2.5污染状况最严重的时段为21:00~23:59;PM2.5中NH+4、NO-3和SO2-4是其最主要的水溶性组分,在PM2.5中的平均质量混合比分别为10.225%、13.698%和15.650%,三者在PM2.5中质量混合比最高的时段分别为06:00~08:59、03:00~05:59和18:00~20:59.  相似文献   

2.
西安采暖期PM2.5及其水溶性无机离子的时段分布特征   总被引:2,自引:0,他引:2  
为了探讨西安市采暖期大气颗粒物PM2.5及其水溶性无机成分的污染水平,于2010年1月4日—2月1日按一天8个时段(每个时段3 h)连续采集PM2.5样品四周,每周更换一次滤膜。结果显示,西安市采暖期PM2.5的质量浓度时段差异较大,呈现明显的双峰分布特征:21:00—24:00时段(147.516μg/m3)和09:00—12:00时段(141.678μg/m3)。4种被测水溶性无机组分总浓度为39.801μg/m3,占PM2.5总浓度的30.5%。SO24-和NO3-是最主要组分,占到4种无机组分的86.2%。各离子间相关分析显示,Cl-只与NO3-有较强的相关性,表明机动车尾气对Cl-有较大的贡献。SO24-和NO3-时段分布规律较为相似,与PM2.5浓度的时段分布特征相反:在PM2.5污染最轻的15:00—18:00时段,SO24-和NO3-的相对含量达到一天中的最高浓度时段,而在PM2.5双峰时段,它们的含量有所降低。  相似文献   

3.
西安市冬、夏两季PM2.5中碳气溶胶的污染特征分析   总被引:5,自引:0,他引:5  
为研究西安市冬、夏两季大气颗粒物PM2.5中碳组分的污染变化规律,利用TEOM系列RP1400a采样仪于2010年冬季和夏季进行采样,测定了样品中的有机碳(OC)、无机碳(EC)和水溶性有机碳(WSOA)的含量。结果显示,PM2.5中OC和EC的季节平均浓度值冬季较高,分别是夏季的2.62,1.75倍,这表明西安市冬季碳气溶胶污染严重。OC和EC日变化在不同季节均呈现双峰分布特征,这主要是由交通源的排放和不利的气象条件造成的。OC和EC在冬、夏两季都有较强的相关性(R2分别为0.823和0.543),且OC/EC平均值分别为5.36和3.58,均大于2,表明采样各时段有二次有机碳(SOC)生成。  相似文献   

4.
全面分析2013年西安市13个国控环境空气质量自动监测子站PM2.5监测数据。结果表明:2013年西安市环境空气中PM2.5年均值为105μg/m3,超过《环境空气质量标准》(GB 3095—2012)二级要求(35μg/m3)200.0%,污染较严重;西安市各子站PM2.5月均值总体呈两边高、中间低的"V"型趋势,全市及各子站PM2.5月均值分别为44~206、32~275μg/m3;采暖期(上半年采暖期为1—3月,下半年采暖期为11—12月)、非采暖期(4—10月)PM2.5平均值分别为156、70μg/m3;上、下半年采暖期PM2.5平均值分别为178、124μg/m3;西安市气象风力以微风为主,雨天集中在5—9月,期间PM2.5月均值小于80μg/m3。  相似文献   

5.
室内空气中颗粒物污染特征研究   总被引:1,自引:0,他引:1  
为获得室内空气颗粒物污染特征,2009年8月18~24日在某单位工作及生活区选取4个室内点和1个室外点进行颗粒物采样和成分分析.结果表明,室内粗颗粒(PM10)符合<室内空气质量标准>(GB/T 18883-2002),而细粒子(PM2.5)的浓度水平较高,表明室内PM2.5的污染较重;室内与室外PM2.5比值显示,P...  相似文献   

6.
浙东沿海城市大气颗粒物污染特征及来源解析研究   总被引:5,自引:0,他引:5  
对2009年夏季浙东沿海地区环境空气质量进行监测,监测大气颗粒物(TSP、PM10、PM2.5、PM1.0)浓度,分析颗粒物污染特征、水溶性离子及无机元素组成,运用化学质量平衡受体模型(CMB模型)对浙东沿海地区大气TSP来源进行解析.结果表明,浙东沿海地区的大气颗粒物主要以细颗粒物为主,颗粒物中主要的水溶性离子为SO2-4、NH+4、Ca2+,土壤尘是该地区大气TSP的主要来源,北仑、乐清和奉化TSP中土壤尘的分担率分别达到55.49%、42.52%、40.70%,各监测点TSP来源具有一定的地域特征.  相似文献   

7.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75μg·m~(-3)),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO_3~-与SO24,而安康大气PM0.1颗粒物中水溶性离子主要以SO_4~(2-)与Ca2+为主,PM2.5颗粒物中水溶性离子以NO_3~-、SO_4~(2-)和NH_4~+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

8.
浙江大气PM2.5污染问题突出。利用国家环境空气质量监测站的实时在线监测数据分析了2013年12月上旬长三角地区一次大气PM2.5严重污染前后浙江典型城市(杭州、湖州、金华、宁波和舟山)的PM2.5污染成因。结果表明,严重污染天(SPD)风速和大气边界层高度均较非污染天低,不利于污染物扩散,而气温和相对湿度高,易于二次颗粒物生成。PM2.5/CO(质量比)的变化结果显示,SPD二次颗粒物对杭州、宁波、舟山PM2.5浓度的贡献高于60%,对湖州和金华PM2.5浓度的贡献略低(42%~54%)。杭州SPD时二次NO3-、SO24-、NH4+的增长幅度远高于PM2.5,且氮转化率和硫转化率随相对湿度的升高而上升,表明硫酸盐和硝酸盐的生成是PM2.5污染的重要来源。气团后向轨迹显示,SPD时杭州和湖州主要受江苏、安徽及浙江省内其他城市气团传输的影响,宁波和舟山主要受上海、江苏、安徽及东海上空气团传输的影响,而金华主要受本地及邻近的杭州、绍兴的影响。  相似文献   

9.
分别在采暖期和非采暖期采集了长春市净月区与朝阳区的大气颗粒物,研究其污染特征的差异,并进行了形貌分析。结果表明:(1)净月区采暖期与非采暖期PM_(2.5)平均质量浓度分别为144.86、87.10μg/m~3,PM_(10)平均质量浓度分别为149.07、138.72μg/m~3;朝阳区采暖期与非采暖期PM_(2.5)平均质量浓度分别为234.48、110.01μg/m~3,PM_(10)平均质量浓度分别为275.07、147.50μg/m~3。整体上,非采暖期大气颗粒物浓度低于采暖期。(2)无论是采暖期还是非采暖期,净月区PM_(2.5)与PM_(10)浓度均明显低于朝阳区。(3)净月区采暖期大气颗粒物来源主要是柴油尾气、燃煤源与生物质燃烧;非采暖期,机动车尾气、建筑扬尘、土壤扬尘与某些工业排放对大气颗粒物贡献较大。朝阳区大气颗粒物来源较净月区复杂,这与两个区不同的地理位置和不同功能有直接的联系,建筑扬尘对于朝阳区大气颗粒物的含量有较大的影响。  相似文献   

10.
为了解北京城区夏季大气颗粒物PM_(2.5)及其不同组分的化学、生物污染特征,于2014年5月末连续采样一个月,采样后超声洗脱并冷冻干燥得到PM_(2.5)颗粒物,在PM_(2.5)颗粒物的基础上制备PM_(2.5)水溶性组分和PM_(2.5)单纯颗粒物,进而对PM_(2.5)颗粒物及另外两种组分样品中的化学及生物成分进行分析测定。结果表明,8种水溶性离子总质量占PM_(2.5)各样品的质量分数依次为67.71%,33.37%,0.09%(依次为PM_(2.5)水溶性组分、PM_(2.5)颗粒物、PM_(2.5)单纯颗粒物,下述数据也按此顺序描述);16种"酸提"元素总质量占PM_(2.5)各样品的质量分数依次为4.84%,1.86%,0.78%;各样品中内毒素含量分别为0.054 7 EU·mg-1,0.433 3 EU·mg-1,0.041 9 EU·mg-1;PM_(2.5)颗粒物可以检测到细菌16S r DNA、真菌18S r DNA,拷贝量分别为(2.6±1.0)×108个·g-1、(4.3±0.9)×108个·g-1。  相似文献   

11.
PM10-PM2.5冲击采样器的研制与开发   总被引:1,自引:0,他引:1  
在颗粒物研究中,分级采样是一种常用的监测方法,而冲击采样器是颗粒物分级采样的重要仪器.根据斯托克斯数,对PM10-PM2.5冲击采样器设计参数进行了详细分析,并对PM10-PM2.5的捕集效率特征进行了分析.结果表明,PM10-PM2.5冲击采样器具备理想的PM10和PM2.5捕集效率,PM10冲击采样器、PM2.5冲击采样器切割粒径分别为9.94、2.43μm,均在其允许误差范围内.  相似文献   

12.
为提高细颗粒物(PM2.5)测量的准确性,尝试采用一种新型的气溶胶冷凝湿度控制器(简称冷凝湿度控制器)作为微振荡天平法颗粒物监测仪(TEOM)的除湿方式,在广东大气超级监测站开展了TEOM自动监测(一台采用传统的加热除湿方式,记为TEOM1405;另一台采用冷凝湿度控制器除湿,记为TEOM1405+除湿)和手工监测结果的对比。结果表明,根据PM2.5日均值相关性的拟合结果,TEOM1405监测较手工监测结果总体偏低约13%,加装冷凝湿度控制器后,TEOM1405+除湿监测较手工监测结果总体偏低在5%以内。加装冷凝湿度控制器后,显著提高了PM2.5的监测准确性;在相对湿度较高、二次颗粒物生成量较少的大气环境中,TEOM1405+除湿系统对PM2.5的监测结果是可靠的,而且在降雨过程中监测结果更为稳定;但在相对湿度较高、且二次颗粒物生成量较多的大气环境中,其对PM2.5的监测性能仍待进一步考察;在PM2.5污染比较严重的高污染时段,TEOM1405、TEOM1405+除湿监测到的PM2.5日均质量浓度分别比手工监测结果偏低26%和11%,偏低较多。但这种高污染情况在珠三角地区出现的概率很低,故采用TEOM1405+除湿系统进行PM2.5长期自动监测是可取的。  相似文献   

13.
基于珠三角大气超级站2013年8月至2014年3月PM2.5、PM2.5中主要水溶性无机离子组分及其重要气态前体物等参数的逐时在线监测结果,揭示当地大气PM2.5中二次无机组分与其气态前体物的相互作用,以及PM2.5理化特性与成因的季节差异。结果表明,观测期间,PM2.5、PM10的年平均质量浓度分别为64.2、105.1μg/m3,PM2.5在PM10中所占比例(PM2.5/PM10)平均为61.1%。SO2-4、NO-3、NH+4的年平均质量浓度分别为16.6、9.0、10.2μg/m3,3者之和(SNA)占PM2.5的比例(SNA/PM2.5)平均为55.8%,体现了二次转化对珠三角地区PM2.5污染的重要影响;不同季节,SNA/PM2.5为46.0%~64.3%,夏季最低,冬季最高,其中SO2-4、NH+4对PM2.5的贡献相对稳定,NO-3贡献的季节差异较大;秋、冬季各项观测参数浓度的日变化规律相对明显,夏季除HNO3和NH3外,多项观测参数在低浓度水平波动,日变化规律不明显;珠三角大气中具有足量气态NH3以中和硫酸盐和硝酸盐,PM2.5中NH+4、SO2-4、NO-3主要以(NH4)2SO4和NH4NO3形式存在;本研究站点夏季的硫氧化率和氮氧化率均高于广州市,这充分体现了该站点的区域性特征。  相似文献   

14.
在乌鲁木齐市南、北设置2个采样点,从2011年3-12月采集可吸入颗粒物(PM2.5、PM2.5-10)样品,分析了美国环境保护署优控的13种多环芳烃(PAHs)的浓度,采用比值法、主成分分析法和多元线性回归法对乌鲁木齐市大气PM2.5、PM2.5-10中PAHs的来源进行了分析。结果表明,科学院站PM2.5中13种PAHs的总质量浓度平均值为247.2ng/m3,变动范围为1.14~2 113.33ng/m3;新大站PAHs的总质量浓度平均值为240.84ng/m3,变动范围为4.96~1 359.41ng/m3。而科学院站PM2.5-10中13种PAHs的总质量浓度平均值为57.78ng/m3,变动范围为1.18~519.87ng/m3;新大站的总质量浓度平均值为49.18ng/m3,变动范围为1.38~412.52ng/m3。比值法分析结果表明,所采集样品的2/3来自煤和生物质的燃烧排放;主成分分析法和多元线性回归分析法结果表明,采暖期汽油和煤源对PM2.5中总PAHs的贡献率为46%,而非采暖期混合源的贡献率高达85%。采暖期汽油和柴油源对PM2.5-10中总PAHs的贡献率为66%,而非采暖期混合源的贡献率为78%。  相似文献   

15.
北京春节期间大气颗粒物污染及影响   总被引:13,自引:0,他引:13  
利用2006年春节期间的大气颗粒物浓度及粒径谱分布资料,结合大气能见度及NO2监测数据,分析了北京市鞭炮燃放禁改限后大气颗粒物污染的变化规律,以及对大气消光作用的影响.结果表明:春节期间特别是除夕夜大量鞭炮的集中燃放导致了大气颗粒物浓度的急剧升高,主要以细粒子为主;颗粒物浓度的升高致使大气能见度明显降低,鞭炮燃放最集中的时段,能见度低于2 km;燃放鞭炮产生的颗粒物是造成大气消光作用的主要因素.估算了北京市鞭炮燃放的颗粒物排放量,2006年除夕0:00~1:00市区排放了大约3.0×104kg PM10,官园监测点PM10小时最高质量浓度超过了800 μg/m3.元宵节夜间燃放鞭炮产生的颗粒物半衰期为2.4 h.  相似文献   

16.
重庆主城区春季典型天气的大气颗粒物浓度变化分析   总被引:4,自引:2,他引:2  
选取重庆大气超级站2010年春季典型天气时段的颗粒物实时监测数据,将β射线法和震荡天平法(TEOM法)的PM10监测值进行了比对,分析了PM10、PM2.5和PM1质量浓度百分比例关系及10μm以下颗粒物数浓度随粒径大小的分布规律。结果表明,β射线法与TEOM法的PM10监测结果基本一致,β射线法比TEOM法监测值平均偏低5.4%;PM2.5、PM1和PM0.5的数浓度均占PM10数浓度的98%以上;PM0.25数浓度占PM10数浓度的平均比例为34.9%,占PM1数浓度的平均比例为35.1%;TEOM法监测的PM2.5占PM10日均质量浓度平均比例为51.2%;β射线法监测的PM2.5占PM10日均质量浓度平均比例为56.9%,PM1占PM10平均比例为30.9%。  相似文献   

17.
2012年8月6日—22日利用大气细颗粒物水溶性组分在线监测分析系统和大气气溶胶OC/EC在线分析仪在线分析了西安PM2.5中的水溶性无机离子和OC、EC,并结合气溶胶前体物SO2、NO2和部分气象参数的监测数据进行了分析。结果表明,PM2.5中OC、EC和主要水溶性组分SO2-4、NH+4和NO-3的比重分别为:14.34%、5.35%、26.32%、12.90%和11.28%;以有机物(OM)为主要成分的总碳气溶胶(TCA)在PM2.5中的质量分数为28.30%,其中光化学反应导致OM中二次组分(SOC)高达45.30%;对主要水溶性组分之间的相关性分析发现,NO-3、SO2-4、NH+43种主要组分之间的结合形态为(NH4)2SO4和NH4NO3,对Mg2+和Ca2+的相关分析反映其有多种共同源;此外,硫氧化率(SOR)和氮氧化率(NOR)均较高,表明大气中存在较强的光化学反应。PM2.5的各组分因子分析得到4个主要来源(机动车尾气和燃煤、土壤建筑尘和生物质燃烧、二次硝酸盐气溶胶、二次硫酸盐气溶胶)。  相似文献   

18.
烧结机细颗粒物PM_(2.5)排放特性   总被引:1,自引:0,他引:1  
利用基于荷电低压颗粒物撞击器(ELPI)的颗粒物排放稀释采样系统,对不同烧结机组的机头、机尾、配料和整粒后的烟粉尘进行了PM2.5的现场测试。结果表明了各测试点位排放的PM2.5粒径分布和质量浓度分布特点。烧结机机头脱硫后虽然降低PM2.5的质量浓度,却增大了其粒数浓度,因此应对脱硫工艺进行优化。PM2.5单体颗粒形态有:球形颗粒、超细颗粒、不规则颗粒和烟尘集合体。PM2.5中SO2-4、有机碳(OC)、无机碳(EC)和铁(Fe)的含量较高,分别为2.65%~10.76%,6.15%~12.6%,3.05%~10.05%和4.14%~26.78%。  相似文献   

19.
为了研究大气中PM25污染特征以及其随时间变化规律,基于西安市2013年1月-2014年4月间SO2、NO2、CO、03、日最高温度(Tmax)、日最低温度(Tmin)、PM2.5、PM10等因素的监测数据.运用统计学原理和多元回归分析方法,分析了PM25的污染特征及相关因素对其产生的贡献度,进一步建立了四季的最优多元回归模型.研究结果表明,西安市年平均质量浓度124.9 μg/m3,四季的平均污染浓度从大到小依次为冬、春、秋、夏;春夏两季贡献较大的为SO2、CO;秋冬两季贡献较大的为NO2、CO;最终建立的模型的相关系数较高,模型很好地拟合了冬春两季PM2.5变化趋势,能较准确地反映了西安市PM2.5的污染特征,具有一定的理论和实用价值.  相似文献   

20.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号