首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于2000-2008年突发环境事故资料及社会经济统计数据,研究了上海市近10年突发环境事故的动态变化趋势和空间分布格局;通过系统聚类分析及回归分析法,探讨了引发突发环境事故的内外部因素.研究发现:(1)上海市近10年的突发环境事故逐年递增,年均增加率总体呈先升后降趋势,平均87.9%的事故为水污染和大气污染2类事故;(2)从污染源上看,48.8%的事故由有毒物质泄漏引发的,最常见化学品是二甲苯、氨和氯;(3)从空间分布看,事故集中在上海东北部与西南部区县,以郊区为主,其中宝山区事故发生最为频繁;(4)道路交通事故是上海市风险程度最高的突发环境事故动因,其次为企业管理不善、违反操作规程和规定、操作失误等安全事故以及放射源丢失、被盗事故;(5)监管上的缺陷使工业总产值、人口数、GDP、载货车数、货物运输量、废气排放量和固体废物排放量等社会经济指标与突发环境事故发生次数呈极显著正相关,行之有效的突发环境事故削减措施是加强对污染物或具有环境风险的化学品在生产、储存、运输、使用、处置等各个环节中的监管.  相似文献   

2.
分析了地理信息系统 ( GIS)技术的特点 ,阐述了它在建立区域危险化学品管理体系中的适用性。论述了基于 GIS技术建立区域危险化学品管理体系的主要内容、关键技术和技术路线 ,最后指出了区域危险化学品管理体系是一个需要不断更新的体系。  相似文献   

3.
以天津港水域为主要研究对象,建立了基于层次分析法的多级模糊综合评价模型,对天津海域船舶化学品事故发生风险进行评估。同时,选取了天津港附近海域环境风险影响评价指标,采用了基于危害后果指数法,推导出事故发生对区域海洋环境造成的危害程度。为海事主管部门摸清天津海域船舶化学品事故的风险特征,建立可靠的防范应急机制提供了技术支持。  相似文献   

4.
为深入了解民用散煤燃烧排放颗粒物对大气环境的影响,利用自行设计的采样装置采集民用散煤燃烧颗粒物并采用扫描电镜-能谱(SEM-EDX)分析颗粒物的形貌和元素组成。结果表明,民用散煤燃烧排放的颗粒物主要有焦油球,飞灰,片状或块状碳质颗粒,矿质颗粒,烟尘集合体,其他颗粒。从形貌上看,民用散煤燃烧排放颗粒物以球形和类球形颗粒为主,占颗粒总数的49.2%,烟尘集合体很少,占颗粒总数的3.6%。从元素组成来看,民用散煤燃烧排放颗粒物主要是炭质颗粒,占排放颗粒总数的77.2%,S元素在颗粒中较为常见,但大多数含量较低。从粒径分布来看,民用散煤燃烧排放颗粒物主要是微小颗粒物,绝大多数(81.0%)颗粒分布在1μm粒径范围内。民用散煤燃烧是大气污染物的重要来源之一,应制定相应的管控措施。  相似文献   

5.
中国是世界环境一部分,要研究解决好我国环境问题,必须及时注意世界环境新动向。本文从国际议会联盟的环境会议谈起,叙述(1)当前世界三类公害事故;(2)人类与生物圈;(3)持续发展战略;(4)强化环境管理。目前世界三类公害事故也称为新八大公害事件。其特点是:危害范围大、持续时间长、发生频率高、后果严重。这三类事件在我国也不同程度地存在着。环境问题与经济、社会问题一样,没有一劳永逸的解决方案,只能随经济与社会进步,对新出现的环境问题不断付诸以新的防治对策,才能求得经济、社会、环境三者协调平衡。  相似文献   

6.
危险化学品事故、有机磷农药中毒事件以及化学毒剂恐怖主义的现实威胁,使发展及时高效的洗消技术很有必要。在介绍洗消技术的概念及分类的基础上,重点以苯胺类、有机磷类化合物为洗消降解对象,详细介绍了洗消技术中微生物、物理、化学方法的应用及洗消装备的发展现状,并展望了洗消剂、洗消技术及洗消装备的发展方向。  相似文献   

7.
为了探索不干胶类包装废弃物的热解特性,采用热重分析手段分析了不同升温速率条件下不干胶类废弃物的失重特点,并且采用Ozawa法和KAS法比较分析不同转化率条件下的表观活化能分布.热重分析结果表明,不干胶类废弃物的热解主要分为3个阶段:第1阶段(室温~ 200℃)为不干胶类废弃物的干燥阶段,第2阶段(200 ~ 590℃)为热解的主要阶段,第3阶段(590 ~800℃)为热解半焦的深度热解阶段.升温速率对热解失重率有重要影响,Ozawa法和KAS法计算结果表明,2种方法计算的热解活化能比较接近,Ozawa法得到的活化能为349.9 kJ/mol,KAS法得到的活化能为336.9kJ/mol;并且不干胶类废弃物的热解表观活化能呈现出阶段性分布.  相似文献   

8.
一、前言 酸雨污染是一种区域性环境现象,目前正受到国内外重视.在我国,大气污染特点属煤烟型范畴,硫酸对降水中酸的贡献在90%左右.工业及民用煤燃烧时放出的二氧化硫被认为是酸雨的主要母质,当酸性污染物质积聚达一定程度而环境缓冲能力低,亦即大气中碱性物质少时,降水便发生酸化现象.在短期内某地的自然地理条件及排放酸性物质的污染源一般无大变化,但降水酸度却会发生很大差异.这与气象条件有着密切的关系.本文统计分析了近二年来的酸雨  相似文献   

9.
天津市大气能见度与空气污染物关系分析及控制措施   总被引:1,自引:0,他引:1  
利用天津市1990—2004年大气能见度观测资料及天津市2002—2004年空气污染物监测数据,统计分析了天津市大气能见度变化特征及其与空气污染物的关系。结果表明,天津市20世纪90年代大气能见度处于波动下降趋势,2000—2003年大气能见度整体水平有所改善,到2004年空气质量迅速提高。统计数据说明,在非采暖季的春季,天津市大气能见度的下降与PM10浓度有较大相关性;在夏季,与相对湿度有较大相关性;在采暖季(冬季),与SO2和NOX等空气污染物浓度有密切关系。同时,提出改善城市大气能见度的4个措施:(1)制定长期的大气能见度控制策略;(2)合理改善能源结构;(3)加强城市裸露土地的治理;(4)城市交通采用清洁能源。  相似文献   

10.
研究了侧向流曝气生物滤池工作时COD、SS、氨氮和TN随滤池长度变化的关系.结果表明:(1)SS的去除主要集中在滤池前部0~1.42 m段;(2)对COD的去除,A段(0.56~2.08 m)起了主要作用,B段(2.78~4.66 m)弥补A段的COD去除效果;(3)氨氮的去除主要发生在2.53 m以后,B段承担了去除氨氮的主要作用.  相似文献   

11.
A new predictive toxicokinetics model was developed to estimate subacute toxicity (target organs, severity, etc.) of non-congeneric industrial chemicals, where the chemical structures and physico-chemical properties are only available. Thus, a physiological pharmacokinetics model, which consists of blood, liver, kidney (these were experimentally found as major toxicological targets), muscle and fat compartments , was established to simulate the chemical concentrations in organs/tissues with pharmacokinetic parameters by means of Runge-Kutta-Gill algorithm. The pliarmacokinetic parameters, i.e. absorption rate, absorption ratio, hepatic extraction ratio of metabolism and renal clearance were calculated by using separately established Quantitative Structure-Pharmacokinetics Relationship equations. The developed predictive model was then applied to simulations of 43 non-congeneric industrial chemicals. The chemical concentrations in organs/tissues after single oral administration were simulated, and their maximum concentrations (Cmax's) and area tinder the concentration-time curves (AUC's) were calculated.Fast Inverse Laplace Transform was newly applied for the purpose of simulation of 28-day repeated dose toxicity.Simulated concentrations of 28 days repeated dose were, however, found to be the same as those of simple repetitions of a single administration per day because of the short half-lives of non-congeneric industrial chemicals.A comparison of subacute toxicity data with Cmax's and AUC's in a single dose scenario suggested that the organs/tissues with relatively high concentrations of tested chemical substances were the most sensitive targets within a chemical.Chemical concentrations in liver, for instance, were correlated with the severity of hepatotoxicity among the chemicals. It was also suggested that to improve and widen the present approach, data of metabolite and reactivity of non-congeneric industrial chemicals to organs/tissues, receptors, etc. should be incorporated into the model.  相似文献   

12.
According to the data from authoritative sources, 1,400 sudden leakage accidents occurred in China during 2006 to 2011 were investigated, in which, 666 accidents were used for statistical characteristic abstracted with no or little damage. The research results were as follows: (1) Time fluctuation: the yearly number of sudden leakage accidents is shown to be decreasing from 2006 to 2010, and a slightly increase in 2011. Sudden leakage accidents occur mainly in summer, and more than half of the accidents occur from May to September. (2) Regional distribution: the accidents are highly concentrated in the coastal area, in which accidents result from small and medium-sized enterprises more easily than that of the larger ones. (3) Pollutants: hazardous chemicals are up to 95 % of sudden leakage accidents. (4) Steps: transportation represents almost half of the accidents, followed by production, usage, storage, and discard. (5) Pollution and casualties: it is easy to cause environmental pollution and casualties. (6) Causes: more than half of the cases were caused by human factor, followed by management reason, and equipment failure. However, sudden chemical leakage may also be caused by high temperature, rain, wet road, and terrain. (7) The results of principal component analysis: five factors are extracted by the principal component analysis, including pollution, casualties, regional distribution, steps, and month. According to the analysis of the accident, the characteristics, causes, and damages of the sudden leakage accident will be investigated. Therefore, advices for prevention and rescue should be acquired.  相似文献   

13.
Newark Bay, New Jersey, is particularly vulnerable to ecological damage from petroleum and chemical spills, as a result of the enclosed nature and shallow depth of the bay, the high frequency of shipping traffic, and the numerous chemical and petroleum transfer terminals located alongs its shores. To evaluate the potential impacts to the natural resources of this coastal estuarine ecosystem, chemical and petroleum accidents reported to the US Coast Guard (USCG) between 1982 and 1991 were compiled to determine the frequency and volume of these incidents in Newark Bay and in each of its major tributaries. Records obtained from the USCG National Response Center's computerized database indicated that more than 1453 accidental incidents, resulting in the release of more than 18 million US gallons of hazardous materials and petroleum products, occurred throughout Newark Bay during this period of time. The bulk of the materials released to the aquatic environment consisted of petroleum products, specifically No. 6 Fuel Oil (103 spills, 12 829 272 US gal) and gasoline (207 spills, 48 816 US gal). The majority of the reported incidents occurred in the Arthur Kill and its tributaries, as well as in the Kill Van Kull and the Passaic River. The results of this study indicated that the accidental discharge of petroleum and hazardous chemicals represents a significant source of chemical pollution in Newark Bay. Based on the frequency of spills and the volume of materials released to the aquatic environment, it is likely that these events are having a deleterious effect on the Newark Bay ecosystem.  相似文献   

14.
Watanabe M  Nakata C  Wu W  Kawamoto K  Noma Y 《Chemosphere》2007,68(11):2063-2072
Because of recent volume increases, appropriate management of plastic recycling, which generates various organic compounds, is required to ensure the chemical safety of the processes. The processing temperature and resin type are the important factors determining both the efficiency of the processes and the emission of chemicals. Therefore, we studied the thermal degradation of various plastics at various temperatures from 70 to 300 °C under oxygen-present conditions to identify the semi-volatile organic compounds (SVOCs) emitted and to understand their thermal behaviors. The plastics examined were nitrogen-containing resins, such as polyamide 6, polyurethane, melamine formaldehyde, urea formaldehyde and acrylonitrile-butadiene-styrene. Major commodity plastics were also investigated for comparison. In total, more than 500 SVOCs were detected as emissions from plastics. While various nitrogen-containing SVOCs were detected from nitrogen-containing resins, the major commodity plastics released only these, which possibly were included as additives. These results indicate that the nitrogen atoms in the SVOCs emitted originated from the resins and additives, and not from ambient air at low temperature. As a result of the detection of raw materials, degradation chemicals and by-products of the polymers in the emissions, we found that the variation in chemical species is dependent on the resins. Additives were also emitted from all the resins, meaning that these chemicals were also released to the environment at the temperature examined. In most cases, the numbers and concentrations of SVOCs increased with increasing heating temperature. The variation of thermal behaviors of SVOCs was related to the origins and chemical species of SVOCs.  相似文献   

15.
Decisions in ecological risk management for chemical substances must be made based on incomplete information due to uncertainties. To protect the ecosystems from the adverse effect of chemicals, a precautionary approach is often taken. The precautionary approach, which is based on conservative assumptions about the risks of chemical substances, can be applied selecting management models and data. This approach can lead to an adequate margin of safety for ecosystems by reducing exposure to harmful substances, either by reducing the use of target chemicals or putting in place strict water quality criteria. However, the reduction of chemical use or effluent concentrations typically entails a financial burden. The cost effectiveness of the precautionary approach may be small. Hence, we need to develop a formulaic methodology in chemical risk management that can sufficiently protect ecosystems in a cost-effective way, even when we do not have sufficient information for chemical management. Information-gap decision theory can provide the formulaic methodology. Information-gap decision theory determines which action is the most robust to uncertainty by guaranteeing an acceptable outcome under the largest degree of uncertainty without requiring information about the extent of parameter uncertainty at the outset. In this paper, we illustrate the application of information-gap decision theory to derive a framework for setting effluent limits of pollutants for point sources under uncertainty. Our application incorporates a cost for reduction in pollutant emission and a cost to wildlife species affected by the pollutant. Our framework enables us to settle upon actions to deal with severe uncertainty in ecological risk management of chemicals.  相似文献   

16.
Investigation, mitigation, and clean-up of hazardous materials at Superfund sites normally requires on-site workers to perform hazardous and sometimes potentially dangerous functions. Such functions include site surveys and the reconnaissance for airborne and buried toxic environmental contaminants. Airborne contaminants of concern usually emanate from spilled materials and require monitoring the air at the perimeter and throughout the clean-up site to ascertain the extent of contamination. Buried contaminants of major concern are often the result of leaking underground drums containing toxic wastes and require "reconnaissance excavations" to determine their location. Workers conducting on-site air monitoring risk dermal, ocular and inhalation exposure to hazardous chemicals, while those performing excavations also risk the potential exposure to fire, explosion, and other physical injury. EPA's current efforts to protect its workers and mitigate these risks include the use of robotic devices. Using robots offers the ultimate in personnel protection by removing the worker from the site of potential exposure, especially during site investigations, when there is almost always a certain encounter with unknown chemical wastes having unknown toxicity.

This paper describes the demonstration of a commercially-available robotic plat form modified and equipped for air monitoring and the ongoing research for the development of a ground penetrating radar (GPR) system to detect buried chemical waste drums. These robotic devices can ultimately be routinely deployed in the field for the purpose of conducting inherently safe reconnaissance activities during Superfund / SARA remedial operations.  相似文献   

17.
Moser GA  McLachlan MS 《Chemosphere》2001,45(2):201-211
The gastrointestinal exchange of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans (PCDD/Fs) as well as hexachlorobenzene was measured in five volunteers. The dietary intake and the fecal excretion of the chemicals were quantified and the net absorption/net excretion was calculated as the difference between these two fluxes. Experiments were conducted using an elevated dietary intake and a reduced dietary intake of chemical, and the results were compared with the absorption during normal dietary intake. The net absorption varied widely with the dietary intake for those compounds which bioaccumulate in humans; high dietary intake of chemical resulted in absorption approaching 100% of intake, while low dietary intake resulted in a net excretion several times greater than the dietary intake. In contrast to net absorption, the chemical flux in the feces was largely independent of the dietary intake of chemical for a given individual. Good agreement was found between the feces/blood distribution coefficients measured in this study and in a study with contaminated workers whose blood concentrations were several orders of magnitude higher, indicating that fecal excretion of chemical is linearly proportional to the blood concentration. The results suggest that gastrointestinal exchange can be viewed as two processes operating simultaneously: absorption of contaminant from the diet, and excretion of contaminant from the body's reservoirs via the feces. By subtracting that component of the fecal flux originating from the body, the maximum dietary absorption could be calculated. This was >95% for most of the compounds, decreasing to a minimum of 50-60% for the octachlorinated dioxins and furans. The maximum dietary absorption showed a Kow dependency consistent with the two film model of gastrointestinal absorption of persistent organic chemicals.  相似文献   

18.
- Sustainable chemistry - Section editors: Klaus Günter Steinhäuser, Steffi Richter, Petra Greiner, Jutta Penning, Michael AngrickBackground, Aim and Scope Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management.Main Features There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts.Results and Conclusions It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products are the focus of the future. Thus, a more holistic approach of ‘carrots and sticks’ – that involves not just chemical producers but those who use and purchase chemicals is necessary. Some important lessons of the US experience in chemicals management include: (1) the need for good information on chemicals flows, toxic risks, and safer substances.; (2) the need for comprehensive planning processes for chemical substitution and reduction to avoid risk trade-offs and ensure product quality; (3) the need for technical and research support to firms for innovation in safer chemistry; and (4) the need for rapid screening processes and tools for comparison of alternative chemicals, materials, and products.  相似文献   

19.
Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.  相似文献   

20.
We investigated the levels of polychlorinated dibenzo-p-dioxins (PCDDs) and their related compounds in blood and sebum from Yusho and Yu-Cheng patients and findings compared with those of normal subjects. Concentrations of these compounds in blood and sebum still were obviously reflected the chemical concentration in the causal rice oil ingested 17 or 26 years since the outbreak. In addition, sebum form the body surface was the most useful sample for monitoring the amount of chemicals contaminating the human body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号