首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
The effectiveness of removal of nonaqueous phase liquids (NAPLs) from the entrapment source zone of the subsurface has been limited by soil heterogeneity and the inability to locate all entrapped sources. The goal of this study was to demonstrate the uncertainty of degree of source removal associated with aquifer heterogeneity. In this demonstration, source zone NAPL removal using surfactant-enhanced dissolution was considered. Model components that simulate the processes of natural dissolution in aqueous phase and surfactant-enhanced dissolution were incorporated into an existing code of contaminant transport. The dissolution modules of the simulator used previously developed Gilland-Sherwood type phenomenological models of NAPL dissolution to estimate mass transfer coefficients that are upscaleable to multidimensional flow conditions found at field sites. The model was used to simulate the mass removal from 10 NAPL entrapment zone configurations based on previously conducted two-dimensional tank experiments. These entrapment zones represent the NAPL distribution in spatially correlated random fields of aquifer hydraulic conductivity. The numerical simulations representing two-dimensional conditions show that effectiveness of mass removal depends on the aquifer heterogeneity that controls the NAPL entrapment and delivery of the surfactant to the locations of entrapped NAPLs. Flow bypassing resulting from heterogeneity and the reduction of relative permeability due to NAPL entrapment reduces the delivery efficiency of the surfactant, thus prolonging the remediation time to achieve desired end-point NAPL saturations and downstream dissolved concentrations. In some extreme cases, the injected surfactant completely bypassed the NAPL source zones. It was also found that mass depletion rates for different NAPL source configurations vary significantly. The study shows that heterogeneity result in uncertainties in the mass removal and achievable end-points that are directly related to dissolved contaminant plume development downstream of the NAPL entrapment zone.  相似文献   

2.
3.
An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.  相似文献   

4.
The relationship between dense non-aqueous phase liquid (DNAPL) mass reduction and contaminant mass flux was investigated experimentally in four model source zones. The flow cell design for the experiments featured a segmented extraction well that allowed for analysis of spatially resolved flux information. This flux information was coupled with image analysis of the NAPL spatial distribution to investigate the relationship between flux and the up-gradient NAPL architecture. Results indicate that in the systems studied, the relationship between DNAPL mass reduction and contaminant mass flux was primarily controlled by the NAPL architecture. A specific definition of NAPL architecture was employed where the source zone is resolved into a collection of streamtubes with spatial variability in NAPL saturation along each streamtube integrated and transformed into an effective NAPL content for each streamtube. The distribution of NAPL contents among the streamtubes (NAPL architecture) controlled dissolution dynamics. Two simplified models, a streamtube model and an effective Damkohler number model, were investigated for their ability to simulate dissolution dynamics.  相似文献   

5.
Nonaqueous phase liquid (NAPL) dissolution was studied in three-dimensional (3D) heterogeneous experimental aquifers (25.5 cm x 9 cm x 8.5 cm) with two different longitudinal correlation lengths (2.1 cm and 1.1 cm) and initial spill volumes (22.5 ml and 10.5 ml). Spatial and temporal distributions of NAPL during dissolution were measured using magnetic resonance imaging (MRI). At high NAPL spill volume, average effluent concentrations initially increased during dissolution, as NAPL pools transitioned to NAPL ganglia, and then decreased as the total NAPL-water interfacial area decreased over time. Experimental results were used to test six dissolution models: (i and ii) a one-dimensional (1D) model using either specific NAPL-water interfacial area values estimated from MR images at each time step (i.e., 1D quasi-steady state model), or an empirical mass transfer (Sh') correlation (i.e., 1D transient model), (iii and iv) a multiple analytical source superposition technique (MASST) using either the NAPL distribution determined from MR images at each time step (i.e., MASST steady state model), or the NAPL distribution determined from mass balance calculations (i.e., MASST transient model), (v) an equilibrium streamtube model, and (vi) a 3D grid-scale pool dissolution model (PDM) with a dispersive mass flux term. The 1D quasi-steady state model and 3D PDM captured effluent concentration values most closely, including some concentration fluctuations due to changes in the extent of flow reduction. The 1D transient, MASST steady state and transient, and streamtube models all showed a monotonic decrease in effluent concentration values over time, and the streamtube model was the most computationally efficient. Changes during dissolution of the effective NAPL-water interfacial area estimated from imaging data are similar to changes in effluent concentration values. The 1D steady state model incorporates estimates of the effective NAPL-water interfacial area directly at each time point; the 3D PDM does so indirectly through mass balance and a relative permeability function, which causes reduced water flow through high saturation NAPL regions. Hence, when model accuracy is required, the results indicate that a surrogate of this effective interfacial area is required. Approaches to include this surrogate in the MASST and streamtube models are recommended.  相似文献   

6.
The partitioning of non-aqueous phase liquid (NAPL) compounds to a discontinuous gas phase results in the repeated spontaneous expansion, snap-off, and vertical mobilization of the gas phase. This mechanism has the potential to significantly affect the mass transfer processes that control the dissolution of NAPL pools by increasing the vertical transport of NAPL mass and increasing the total mass transfer rate from the surface of the pool. The extent to which this mechanism affects mass transfer from a NAPL pool depends on the rate of expansion and the mass of NAPL compound in the gas phase. This study used well-controlled bench-scale experiments under no-flow conditions to quantify for the first time the expansion of a discontinuous gas phase in the presence of NAPL. Air bubbles placed in glass vials containing NAPL increased significantly in volume, from a radius of 1.0 mm to 2.0 mm over 215 days in the presence of tetrachloroethene (PCE), and from a radius of 1.2 mm to 2.3 mm over 22 days in the presence of trans-1,2-dichloroethene (tDCE). A one-dimensional mass transfer model, fit to the experimental data, showed that this expansion could result in a mass flux from the NAPL pool that was similar in magnitude to the mass flux expected for the dissolution of a NAPL pool in a two-fluid (NAPL and water) system. Conditions favouring the significant effect of a discontinuous gas phase on mass transfer were identified as groundwater velocities less than ~0.01 m/day, and a gas phase that covers greater than ~10% of the pool surface area and is located within ~0.01 m of the pool surface. Under these conditions the mass transfer via a discontinuous gas phase is expected to affect, for example, efforts to locate NAPL source zones using aqueous concentration data, and predict the lifetime and risk associated with NAPL source zones in a way that is not currently included in the common conceptual models used to assess NAPL-contaminated sites.  相似文献   

7.
This paper investigates the dissolution characteristics of ternary nonaqueous phase liquid (NAPL) mixtures with the goal of comparing the relative contributions of multicomponent (intra-NAPL) diffusion, film transfer and thermodynamic nonideality. These contributions are compared at the pore scale and intermediate scale (several centimeters downstream from the source). Trichloroethene (TCE), tetrachloroethene (PCE) and 1,1,1-trichloroethane (TCA) were selected to model a reasonably ideal mixture; TCE, PCE and octanol were selected as a relevant nonideal mixture. A multicomponent diffusion-based dissolution model incorporating hydrodynamic theory was formulated to estimate intra-NAPL concentration gradients and associated aqueous interfacial concentrations for ideally shaped (spherical) NAPL blobs. Pore scale dissolution times for this model were compared to those generated using the conventional well-mixed NAPL dissolution model, applying the same film transfer boundary condition in both cases. Activity coefficients (spatially and temporally variable for the diffusion model, temporally variable for the well-mixed model) were estimated using UNIFAC. NAPL interfacial concentration histories generated using the pore scale models were used as input in a three-dimensional groundwater transport model (MT3DMS) to compare downstream concentration distributions. For the relatively large NAPL bodies simulated (r=0.6 cm), intra-NAPL diffusion effects were found to be significant at the pore scale and were strongly impacted by the mixture's thermodynamic ideality. At the intermediate scale, and for the conditions tested, modest differences in the simulations suggested that intra-NAPL diffusion effects would be negligible compared to those associated with mixture composition uncertainty, dissolution rate processes related to NAPL-induced permeability effects and hydrodynamic issues associated with flow field heterogeneity.  相似文献   

8.
Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.  相似文献   

9.
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.  相似文献   

10.
Over a period of several decades multiple leaks of large volumes from storage facilities located near Hnevice (Czech Republic) have caused the underlying Quaternary aquifer to be severely contaminated with nonaqueous phase liquid (NAPL) petroleum hydrocarbons. Beginning in the late 1980's the NAPL plume started to shrink as a consequence of NAPL dissolution exceeding replenishment and due to active remediation. The subsurface was classified geochemically into four different zones, (i) a contaminant-free zone never occupied by NAPL or dissolved contaminants, (ii) a re-oxidation zone formerly occupied by NAPL, (iii) a zone currently occupied by NAPL, and (iv) a lower fringe zone between the overlying NAPL and the deeper underlying contaminant-free zone. The study investigated the spatial and temporal variability of the redox zonation at the Hnevice site and quantified the influence of iron-cycling on the overall electron balance. As a first step inverse geochemical modelling was carried out to identify possible reaction models and mass transfer processes. In a subsequent step, two-dimensional (forward) multi-component reactive transport modelling was performed to evaluate and quantify the major processes that control the geochemical evolution at the site. The study explains the observed enrichment of the lower fringe zone with ferrihydrite as a result of the re-oxidation of ferrous iron. It suggests that once the NAPL zone started to shrink the dissolution of previously formed siderite and FeS by oxygen and nitrate consumed a significant part of the oxidation capacity for a considerable time period and therefore limited the penetration of electron acceptors into the NAPL contaminated zone.  相似文献   

11.
The objective of the following research is to theoretically quantify the enhancement of interphase mass transfer of dissolved non-aqueous phase liquid (NAPL) compounds from the non-aqueous phase to the aqueous phase and the enhancement of dispersive mass transport from a NAPL zone due to destruction of dissolved NAPL compounds. For relatively slow reaction rates, such as for permanganate and perchloroethene (PCE), local-scale mass transfer enhancement is expected to be small. Dispersive mass transport with reaction from a horizontal NAPL zone can be quantified using equations derived for a mathematically equivalent falling film reactor system. In contrast to local-scale interphase mass transfer, dispersive mass transport from NAPL zones may be significantly increased by reaction. Enhancement factors due to destruction of the NAPL compound(s) are mainly dependent on NAPL solubility and oxidant concentration and to a lesser extent on reaction rate, stoichiometry, and transverse dispersion coefficients. Higher NAPL solubility and/or lower oxidant concentration reduces the maximum expected enhancement factor. Reaction enhancement factors for mass transport from NAPL zones are expected to be in the range of 5-50 for permanganate and chlorinated solvents. Theoretical results suggest that assuming instantaneous reaction rates may be appropriate for dispersive mass transport from NAPL zones.  相似文献   

12.
A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149].  相似文献   

13.
The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL spill event decreased CT mass that reached the water table by 98% and had a significant impact on the formation of trapped NAPL. For all cases simulated, use of the new constitutive model that allows the formation of residual NAPL increased the amount of NAPL retained in the vadose zone. Density-driven advective gas flow from the ground surface controlled vapor migration in strongly anisotropic layers, causing NAPL mass flux to the lower layer to be reduced. These simulations indicate that consideration of the formation of residual and trapped NAPLs and dynamic boundary conditions (e.g., areas, rates, and periods of different NAPL and water discharge and fluctuations of atmospheric pressure) in the context of full three-phase flow are needed, especially for NAPL spill events at the ground surface. In addition, NAPL evaporation, density-driven gas advection, and NAPL vertical movement enhanced by water flow must be considered in order to predict NAPL distribution and migration in the vadose zone.  相似文献   

14.
Because of their low solubility, waste chemicals in the form of nonaqueous phase liquids (NAPLs) that are entrapped in subsurface formations act as long-term sources of groundwater contamination. In the design of remediation schemes that use surfactants, it is necessary to estimate the mass transfer rate coefficients under multi-dimensional flow fields that exit at field sites. In this study, we investigate mass transfer under a two-dimensional flow field to obtain an understanding of the basic mechanisms of surfactant-enhanced dissolution and to quantify the mass transfer rates. Enhanced dissolution experiments in a two-dimensional test cell were conducted to measure rates of mass depletion from entrapped NAPLs to a flowing aqueous phase containing a surfactant. In situ measurement of transient saturation changes using a gamma attenuation system revealed dissolution patterns that are affected by the dimensionality of the groundwater flow field. Numerical modeling of local flow fields that changed with time, due to depletion of NAPL sources, enabled the examination of the basic mechanisms of NAPL dissolution in complex groundwater systems. Through nonlinear regression analysis, mass transfer rates were correlated to porous media properties, NAPL saturation and aqueous phase velocity. Results from the experiments and numerical analyses were used to identify deficiencies in existing methods of analysis that uses assumptions of one-dimensional flow, homogeneity of aquifer properties, local equilibrium and idealized transient mass transfer.  相似文献   

15.
Hot water flushing for immiscible displacement of a viscous NAPL   总被引:2,自引:0,他引:2  
Thermal remediation techniques, such as hot water flooding, are emerging technologies that have been proposed for the removal of nonaqueous phase liquids (NAPLs) from the subsurface. In this study a combined laboratory and modeling investigation was conducted to determine if hot water flooding techniques would improve NAPL mass removal compared to ambient temperature water flushing. Two experiments were conducted in a bench scale two-dimensional sandbox (55 cmx45 cmx1.3 cm) and NAPL saturations were quantified using a light transmission apparatus. In these immiscible displacement experiments the aqueous phase, at 22 degrees C and 50 degrees C, displaced a zone with initial NAPL saturations on the order of 85%. The interfacial tension and viscosity of the selected light NAPL, Voltesso 35, are strongly temperature-dependent. Experimental results suggest that hot water flooding reduced the size of the high NAPL saturation zone, in comparison to the cold water flood, and yielded greater NAPL mass recovery (75% NAPL removal vs. 64%). Hot water flooding did not, however, result in lower residual NAPL saturations. A numerical simulator was modified to include simultaneous flow of water and organic phases, energy transport, temperature and pressure. Model predictions of mass removal and NAPL saturation profiles compared well with observed behavior. A sensitivity analysis indicates that the utility of hot water flooding improves with the increasing temperature dependence of NAPL hydraulic properties.  相似文献   

16.
A quantitative two-dimensional laboratory experiment was conducted to investigate the immiscible flow of a light non-aqueous phase liquid (LNAPL) in the vadose zone. An image analysis technique was used to determine the two-dimensional saturation distribution of LNAPL, water and air during LNAPL infiltration and redistribution. Vertical water saturation variations were also continuously monitored with miniature resistivity probes. LNAPL and water pressures were measured using hydrophobic and hydrophilic tensiometers. This study is limited to homogeneous geological conditions, but the unique experimental methods developed will be used to examine more complex systems. The pressure measurements and the quantification of the saturation distribution of all the fluids in the entire flow domain under transient conditions provide quantitative data essential for testing the predictive capability of numerical models. The data are used to examine the adequacy of the constitutive pressure-saturation relations that are used in multiphase flow models. The results indicate that refinement of these commonly used hydraulic relations is needed for accurate model prediction. It is noted in particular that, in three-fluid phase systems, models should account for the existence of a residual NAPL saturation occurring after NAPL drainage. This is of notable importance because residual NAPL can act as a non negligible persistent source of contamination.  相似文献   

17.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   

18.
At concentrations above the critical micelle concentration, surfactants can significantly enhance the solubilization of residual nonaqueous phase liquids (NAPL) and, for this reason, are the focus of research on surfactant-enhanced aquifer remediation (SEAR). As a consequence of their amphiphilic nature, surfactants may also partition to various extents between the organic and aqueous phases, thereby affecting SEAR performance. We report here on the observation and analysis of the effect of surfactant partitioning on the dissolution kinetics of residual perchloroethylene (PCE) by aqueous solutions (1000 mg/L) of the non-ionic surfactant Triton X-100 in a model porous medium. For this fluid system, batch equilibration experiments showed that the surfactant partitions strongly into the NAPL (NAPL-water partition coefficient equal to 12.5). Dynamic interfacial tension (IFT) measurements were employed to study surfactant diffusion and interfacial adsorption. The dynamic IFT measurements were consistent with partitioning of the surfactant between the two liquid phases. PCE dissolution experiments, conducted in a transparent glass micromodel using an aqueous surfactant solution, were contrasted to experiments using clean water. Surfactant partitioning was observed to delay significantly the onset of micellar solubilization of PCE, an observation reproduced by a numerical model. This effect is attributed to the reduction of surfactant concentration in the immediate vicinity of the NAPL-water interface, which accompanies transport of the surfactant into the NAPL. Accordingly, it is suggested that both the rate and the extent of diffusion of the surfactant into the NAPL affect the onset of and the driving force for micellar solubilization. While many surfactants do not readily partition in NAPL, this possibility must be considered when selecting non-ionic surfactants for the enhanced solubilization of residual chlorinated solvents in porous media.  相似文献   

19.
This study develops a modeling approach for simulating and evaluating entrapped light nonaqueous-phase liquid (light NAPL-LNAPL) dissolution and transport of the solute in a fractured permeable aquifer (FPA). The term FPA refers to an aquifer made of porous blocks of high permeability that embed fractures. The fracture network is part of the domain characterized by high permeability and negligible storage. Previous studies show that sandstone aquifers often represent FPAs. The basic model developed in this study is a two-dimensional (2-D) model of permeable blocks that embed oblique equidistant fractures with constant aperture and orientation. According to this model, two major parameters govern NAPL dissolution and transport of the solute. These parameters are: 1) the dimensionless interphase mass transfer coefficient, K(f0), and 2) the mobility number, N(M0). These parameters represent measures of heterogeneity affecting flow, NAPL dissolution, and transport of the solute in the domain. The parameter K(f0) refers to the rate at which organic mass is transferred from the NAPL into the water phase. The parameter N(M0) represents the ratio of flow through the porous blocks to flow through the fracture network in regions free of entrapped NAPL. It also provides a measure of groundwater flow bypassing regions contaminated by entrapped NAPL. In regions contaminated by entrapped NAPL our simulations have often indicated very low permeability of the porous blocks, enabling a significant increase of the fracture flow at the expense of the permeable block flow. Two types of constitutive relationships also affect the rate of FPA cleanup: 1) the relationship between the saturation of the entrapped NAPL and the permeability of the porous blocks, and 2) the relationships representing effects of the entrapped NAPL saturation and the permeable block flow velocity on rates of interphase mass transfer. This study provides basic tools for evaluating the characteristics of pump-and-treat cleanup of FPAs by referring to sets of parameters and constitutive relationships typical of FPAs. The numerical simulations carried out in this study show that at high initial saturation of the entrapped NAPL, during initial stages of the FPA cleanup the contaminant concentration increases, but later it decreases. This phenomenon originates from significant groundwater bypassing the NAPL entrapped in the permeable blocks via the fracture network.  相似文献   

20.
In the event of a gasoline spill containing oxygenated compounds such as ethanol and MTBE, it is important to consider the impacts these compounds might have on subsurface contamination. One of the main concerns commonly associated with ethanol is that it might decrease the biodegradation of aromatic hydrocarbon compounds, leading to an increase in the hydrocarbon dissolved plume lengths. The first part of this study (Part 1) showed that when gasoline containing ethanol infiltrates the unsaturated zone, ethanol is likely to partition to and be retained in the unsaturated zone pore water. In this study (Part 2), a controlled field test is combined with a two-dimensional laboratory test and three-dimensional numerical modelling to investigate how ethanol retention in the unsaturated zone affects the downgradient behaviour of ethanol and aromatic hydrocarbon compounds. Ethanol transport downgradient was extremely limited. The appearance of ethanol in downgradient wells was delayed and the concentrations were lower than would be expected based on equilibrium dissolution. Oscillations in the water table resulted in minor flushing of ethanol, but its effect could still be perceived as an increase in the groundwater concentrations downgradient from the source zone. Ethanol partitioning to the unsaturated zone pore water reduced its mass fraction within the NAPL thus reducing its anticipated impact on the fate of the hydrocarbon compounds. A conceptual numerical simulation indicated that the potential ethanol-induced increase in benzene plume length after 20 years could decrease from 136% to 40% when ethanol retention in the unsaturated zone is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号