首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to assess the effects of black carbon, clay type and aging (1-1.5yr) on desorption and bioavailability of hexachlorobenzene (HCB) in spiked artificial sediments. Tenax (a super sorbent)-mediated desorption was used to examine the effects of these parameters on the physicochemical availability of HCB. The Tenax-mediated desorption of HCB from the four aged artificial sediments exhibited biphasic kinetics. The fast desorbing fractions ranged from 64.8% to 22.3%, showing reductions of 4.0-18.9% compared with freshly-spiked sediments. Statistical analysis on the fast desorbing fractions showed that all three treatment effects (i.e., montmorillonite clay, black carbon content, and aging) were significant. Two sediments with higher black carbon content exhibited much greater aging effects (i.e., greater reduction in fast desorbing fraction) than the other two sediments without the addition of black carbon. For both freshly-spiked and aged sediments, the desorption resistant sediment-bound HCB (i.e., slow desorbing fraction) correlated reasonably well to previously reported rat fecal elimination of HCB, which is a measure of the non-bioavailable fraction of sediment-bound HCB. A similar correlation was also observed between fast desorbing fraction and previously reported accumulation of HCB in the rat body (carcass+skin). These observations suggest that physicochemical availability, as defined by the desorption of HCB from sediments, provides a reasonable prediction of the oral bioavailability of sediment-bound HCB to rats. These results showed that montmorillonite clay, black carbon and aging reduced physicochemical availability and ultimately bioavailability of sediment-bound HCB.  相似文献   

2.
The desorption kinetics of hexachlorobenzene (HCB) in four freshly spiked artificial sediments were determined using a polymeric adsorbent Tenax-mediated desorption. The sediments included a standard sediment (SS) prepared as per Organisation for Economic Cooperation and Development 218 guidelines and three derived artificial sediments prepared by supplementing the SS sediment with various levels of black carbon (lamp black soot) and/or montmorillonite clay. The desorption kinetics exhibited biphasic behavior, i.e., a fast desorbing fraction followed by a slow desorbing fraction. The addition of either lamp black soot or montmorillonite clay resulted in the reduction of the fast desorbing fraction (Ffast) of HCB in three derived sediments compared with SS sediment. Both black carbon and montmorillonite clay treatment effects on the fast desorbing fraction were statistically significant for the four artificial sediments. The black carbon treatment (i.e., addition of 0.5% wt/wt lamp black soot) effect was an average reduction of Ffast by approximately 11%, whereas the montmorillonite treatment (i.e., addition of 15% wt/wt montmorillonite clay) effect was an average reduction of Ffast by approximately 17%. The presence of soot black carbon particles reduced the desorption rate of HCB in sediments since black carbon exhibits very high sorption capacity and extremely slow diffusion rate compared with those of the natural organic matter in sediment.  相似文献   

3.
A laboratory-scale ultrasonication technique was developed for fluoranthene extraction from soils and sediments where the utilized organic solvent would be recovered after the extraction process. Therefore, the remedied soils and sediments would be free from toxicant and trace of added chemicals. The developed ultrasonication technique outlined here is an integrated part of a complete remediation system consisting of extraction and solar detoxification reactors. This paper investigates extraction efficiencies under different conditions, outlines solvent recovery technique and compares extraction efficiency of the developed ultrasonication technique with a commercially available laboratory-scale sonication bath. The spiked soil sample with fluoranthene (19.4 microg g(-1)) and organic solvent was ultrasonicated at 40 degrees C for 20 min. The sonicated mixture was allowed to settle for 10 min before the extract gravitated into the modified solar reactor for fluoranthene detoxification. The added solvents were removed from the remedied soil before it was released to site. The mixture of cyclohexane and ethanol (CH:ETOH) (3:1) was the favorable solvent from among 10 organic solvents because of its high extraction efficiency, safety and low cost. Preliminary results indicated that the developed extraction technique recovered more than 93% of fluoranthene from soil samples.  相似文献   

4.
Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r2 = 0.85) than versus OC (r2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6+/-3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone.  相似文献   

5.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

6.
Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates.  相似文献   

7.
Atrazine, a broad-leaf herbicide, has been used widely to control weeds in corn and other crops for several decades and its extensive used has led to widespread contamination of soils and water bodies. Phytoremediation with switchgrass and other native prairie grasses is one strategy that has been suggested to lessen the impact of atrazine in the environment. The goal of this study is to characterize: (1) the uptake of atrazine into above-ground switchgrass biomass; and (2) the degradation and transformation of atrazine over time. A fate study was performed using mature switchgrass columns treated with an artificially-created agricultural runoff containing 16 ppm atrazine. Soil samples and above-ground biomass samples were taken from each column and analyzed for the presence of atrazine and its chlorinated metabolites. Levels of atrazine in both soil and plant material were detectable through the first 2 weeks of the experiment but were below the limit of detection by Day 21. Levels of deethylatrazine (DEA) and didealkylatrazine (DDA) were detected in soil and plant tissue intermittently over the course of the study, deisopropylatrazine (DIA) was not detected at any time point. A radiolabel study using [14C]atrazine was undertaken to observe uptake and degradation of atrazine with more sensitivity. Switchgrass columns were treated with a 4 ppm atrazine solution, and above-ground biomass samples were collected and analyzed using HPLC and liquid scintillation counting. Atrazine, DEA, and DIA were detected as soon as 1 d following treatment. Two other metabolites, DDA and cyanuric acid, were detected at later time points, while hydroxyatrazine was not detected at all. The percentage of atrazine was observed to decrease over the course of the study while the percentages of the metabolites increased. Switchgrass plants appeared to exhibit a threshold in regard to the amount of atrazine taken up by the plants; levels of atrazine in leaf material peaked between Days 3 and 4 in both studies.  相似文献   

8.
Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine). SSF experiments were carried out in bench-scale bioreactors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate-extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60-d incubation period at 40 degrees C. The majority of the [2,6-pyridyl-14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C-U-ring]atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

9.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences.  相似文献   

10.
The effect of aging on the solid/pore-water partitioning and desorption behaviour of tributyltin (TBT) in sediments was examined. Three sediment samples with contrasting physical and chemical properties were spiked with 10 mg/kg TBT and aged under sterile conditions for periods of time ranging from 1 to 84 days. Aging had a negligible effect on partitioning and desorption behaviour in a sandy sample with very low organic carbon content (0.2% w/w). In contrast, for samples with larger amounts of organic carbon (2.6% and 4.8% w/w), aging caused substantial increases in TBT sorption. For these samples, apparent distribution coefficients (KD,app) obtained from sequential 2 h desorption experiments also exhibited a twofold increase between spiked sediments subjected to aging for 1 day and 84 days. This study demonstrates that aging effects may be an important aspect of TBT fate in contaminated sediments.  相似文献   

11.
Abstract

Pesticides are often applied in combination, but less‐often is soil persistence measured this way. The present field and laboratory study determined relative persistence of five herbicides and two insecticides, co‐applied, as a function of three soil water contents. Losses were modeled adequately by first‐order dissipation, with no significant improvement by using a two‐compartment model. The order of persistence in a silt loam, at 25% moisture, was carbofuran < cyanazine < metribuzin = alachlor < atrazine < ethoprop < metolachlor (t½ ranged from 7–91 days). Carbofuran degradation increased greatly from 12–25% soil moisture; atrazine was unaffected by 12–35%, whereas the remaining compounds showed limited increasing loss in wetter soil. Field‐based persistence was more variable, but generally similar to lab rankings.  相似文献   

12.
Three different soils were incubated under field conditions with 14C-ring labelled atrazine. After six months, the soils were exhaustively extracted with methanol and sonicated in water. The dispersed material was then fractionated by sieving, sedimentation and centrifugation, and each fraction was separated into humin, fulvic and humic acids. In all soils, the well humified organic matter and the atrazine residues were mainly located in the 20-2 and 2-0.2 μm fractions. There was a very large concentration of bound residues in the coarsest fractions, especially in the 200-50 μm fraction. These could be related to the active degradation of coarse plant residues, or to bioconcentration by soil actinomycetes and fungi.  相似文献   

13.
Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N2 (N2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected in ground water dating back to the time these compounds were introduced.  相似文献   

14.
Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p?<?0.05), suggesting the importance of the sorption capacity in affecting desorption and biodegradation of phenanthrene. Strong linear relationships were observed between the amount of HPCD-extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments.  相似文献   

15.
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 microg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 microg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 microg/L in the NCGA sites and from 1.04 to 4.1 microg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were > or = 1 microg/L throughout the season, while DEA concentrations were mostly <0.5 microg/L before planting but increased after planting and application of herbicides to concentrations >2 microg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 microg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall.  相似文献   

16.
This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed.  相似文献   

17.
The atrazine behaviour in soils when submitted to an electric field was studied and the applicability of the electrokinetic process in atrazine soil remediation was evaluated. Two polluted soils were used, respectively with and without atrazine residues, being the last one spiked. Four electrokinetic experiments were carried out at a laboratory scale. Determination of atrazine residues were performed by enzyme-linked immunosorbent assay (ELISA). The results show that the electrokinetic process is able to remove efficiently atrazine in soil solution, mainly towards the anode compartment: Estimations show that 30-50% of its initial amount is removed from the soil within the first 24h. A one-dimensional model is developed for simulating the electrokinetic treatment of a saturated soil containing atrazine. The movement of atrazine is modelized taking into account the diffusion transport resulting from atrazine concentration gradients and the reversed electro-osmotic flow at acidic soil pH.  相似文献   

18.
Kim J  Rhee GY 《Chemosphere》2001,44(6):1413-1420
The effect of sediment sources on the selection of polychlorinated biphenyl (PCB) dechlorinating competence was investigated using sediments from two different locations, the Grasse River and Owasco Lake. These two sediments had a similar organic carbon content but different particle size distribution. The two PCB-free sediments were spiked with Aroclor 1248 and inoculated with microorganisms from the Reynolds and General Motors sites in the St. Lawrence River, which exhibited different dechlorination patterns. When each inoculum was serially transferred into fresh sediments four times (every 8-10 weeks), they still maintained the initial dechlorination patterns regardless, the source of sediments and the number of transfers, and dechlorination patterns of the two inocula in the same sediments did not converge. In a parallel approach, when the acclimated microorganisms from the Reynolds site were inoculated into fresh sediments from both sources as well as sediments enriched with organic carbon (2%, w/v), the dechlorination pattern remained unchanged after a 40-week incubation. These results suggest that the sediment characteristics or organic carbon content did not play a role in the selection of dechlorinating populations.  相似文献   

19.
The partitioning of Co, Cr, Fe, Sc and Zn into three fractions (reducible by acidified hydroxylamine hydrochloride, oxidizable by acidified hydrogen peroxide, and the residual after the previous extractions) of Saronikos Gulf surface sediments was determined by using a sequential extraction technique. The metal concentrations were determined by Instrumental Neutron Activation Analysis. With the exception of Sc, the metal content in the reducible and oxidizable fractions increases in the polluted sediments near the Athens Sewage Outfall (ASO) and a Fertilizer Plant (FP). In the non-polluted sediments, the residual fraction is the most important carrier for all metals examined. Oxidizable Cr and Zn correlate well with the organic carbon content of the sediments, but the reducible fraction (mainly Fe/Mn hydroxides) is the most important sink for Co, Cr, Fe and Zn in the polluted sediments near the ASO. The pyrite-rich wastes from the FP are influencing the geochemical partitioning of the metals examined in the sediments in front of the FP and, partially, in the sediments near the ASO.  相似文献   

20.
This research investigated the role of the pH buffer capacity of sediment on the dechlorination of atrazine using zero valent iron (ZVI). The buffer capacity of the sediment was quantified by batch experiments and estimated to be 5.0 cmol OH(-) . pH(-1). The sediments were spiked with atrazine at 7.25-36.23 mg kg(-1) (6.21 x 10(-7)-3.09 x 10(-6) mol atrazine . g(-1) sediment) for the batch experiments. The buffer capacity of the sediment maintained the sediment suspension at neutral pH, thereby enabling continuous dechlorination until the buffer capacity of the sediment was depleted. The pseudo-first order dechlorination constants were estimated to be in the range of 1.19 x 10(-2)-7.04 x 10(-2) d(-1) for the atrazine-spiked sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号