首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arsenic resistant strains of bacteria and fungi were isolated from soil contaminated by chemical warfare agents. Until now, no metabolic products of microbial attack against the phenyl residues of the model substrate triphenylarsine (TP) were found if it was incubated together with these strains in liquid culture assays. However, one of the isolated fungi, Trichoderma harzianum As 11, was found to oxidize TP to triphenylarsineoxide (TPO). The yeast Trichosporon mucoides SBUG 801 and the white-rot fungus Phanerochaete chrysosporium were also able to oxidize the As(III) in TP. In addition, P. chrysosporium transformed phenylarsineoxide (PAO) to phenylarsonic acid (PAA) under O2-atmosphere. By means of a respirometer system, the oxidation of TP by T. harzianum As 11 was confirmed by a significantly higher consumption of oxygen in the presence of these compounds. HPLC analysis of the oxidation products TPO and PAA in the medium of the assays provided evidence for the transfer reaction of As(III) to As(V) in organic bonds. The oxidation products TPO and PAA are more hydrophilic than TP and PAO. Therefore, it was concluded that particular fungi contribute to the mobilization of arsenic in soil contaminated by chemical warfare agents.  相似文献   

2.
A gas Chromatographic method for the determination of phenylarsenic compounds (sternutators) and their metabolites in soil and material samples is described. The chemical warfare agents (CWA), but not their hydrolysis and oxidation products, can be detected with GC/ECD. After derivatization with thiols or dithiols, the sum of diphenylarsenic and phenylarsenic compounds can be determined with GC/ECD. The comparison of the analytical results with and without derivatization shows that the sternutators in the investigated samples are metabolized in part.  相似文献   

3.
In order to remove high concentrations of hydrogen sulfide (H2S) gas from anaerobic wastewater treatments in livestock farming, a novel process was evaluated for H2S gas abatement involving the combination of chemical absorption and biological oxidation processes. In this study, the extensive experiments evaluating the removal efficiency, capacity, and removal characteristics of H2S gas by the chemical absorption reactor were conducted in a continuous operation. In addition, the effects of initial Fe2 + concentrations, pH, and glucose concentrations on Fe2 + oxidation by Thiobacillus ferrooxidans CP9 were also examined. The results showed that the chemical process exhibited high removal efficiencies with H2S concentrations up to 300 ppm, and nearly no acclimation time was required. The limitation of mass‐transfer was verified as the rate‐determining step in the chemical reaction through model validation. The Fe2 + production rate was clearly affected by the inlet gas concentration as well as flow rate and a prediction equation of ferrous production was established. The optimal operating conditions for the biological oxidation process were below pH 2.3 and 35°C in which more than 90% Fe3 + formation ratio was achieved. Interestingly, the optimal glucose concentration in the medium was 0.1%, which favored Fe2 + oxidation and the growth of T. ferrooxidans CP9.  相似文献   

4.
Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm2. The simultaneous detection of two markers may lead to a decrease of the number of false positive.  相似文献   

5.
The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO2 nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33?±?2 °C). Degradation products during the treatment were identified by gas chromatography–mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min?1), the highest degradation rate is obtained in the presence of TiO2 nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO2, in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO2 nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.  相似文献   

6.
Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT®, V-SCRT®, Z-SCRT®, Horizon, DPX and CCRT®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622–5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI–Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT®-UDDS, Z-SCRT®-Cruise, CRT® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT®-UDDS) or insignificant (CCRT®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ~5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT®) had decreased OC solubility (WSOC/OC: 8–25%) unlike those with uncatalyzed filters (SCRT®s, Horizon; WSOC/OC  60–100%). Ammonium was present predominantly in the nucleation mode, indicating that ternary nucleation may be the responsible mechanism for formation of these particles.  相似文献   

7.
Chlorovinylannes (Lewisites) were produced and handled during WW I and WW II as chemical warfare agents. Residues of these cwa and their metabolites are still present today and continue to contaminate soil and water. A gas Chromatographic method for the detection and determination of chlorovinylarsines (Lewisites) and their metabolites is shown. Lewisite II and Lewisite III, but not Lewisite I and the metabolites of Lewisite I and Lewisite II can be detected and determined using GC/ECD. After derivatization with thiols, the sum of Lewisite I or Lewisite II and their metabolites are detected. With the proper selection of the thiol, matrix interferences can be eliminated because of the different retention times of the derivatives.  相似文献   

8.
Environmental Science and Pollution Research - Nuclear, biological, and chemical warfare (NBC) agents cause an inevitable threat to defense forces and civilians. Exposure to these toxic agents...  相似文献   

9.
Ethylarsine dichloride was used during WW I as a chemical warfare agent. Residues of this chemical warfare agent and its metabolites are still present today and continue to contaminate soil and water. A gas Chromatographic method for the detection and determination of ethylarsine dichloride is shown. Six dithiols were tested as possible derivatization reagents for ethylarsine dichloride. With selection of the dithiol, matrix interferences can be eliminated because of the different retention times of the derivatives.  相似文献   

10.
Environmental Science and Pollution Research - Chemical warfare (CW) agents are toxic synthetic chemicals that affect human’s health, and sulfur mustard (SM) is a well-known chemical weapon...  相似文献   

11.
Environmental Science and Pollution Research - The present study aimed to investigate the persistence and existence of chemical warfare agents (CWAs) and related dissipation products in the...  相似文献   

12.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

13.
In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical (?OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which ?OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which ?OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.  相似文献   

14.
Index     
Abstract

Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-im pregnated ASC-carbons removed the simulated gases.  相似文献   

15.
Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals (?OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by ?OH is briefly discussed.  相似文献   

16.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   


17.
Abstract

A technique for comparing pesticide penetration through fabric was devised. It involved passing fabric swatches through a controlled spray system and measuring the pesticide residue transferring on and through the tested fabric. Six variations in fabric were selected for testing: 100% cotton woven chambray,

Scotch‐guard® treated chambray, Tyvek® , Crowntex® , and two variations of Gore Tex®. Guthion® (azinphos‐methyl) was chosen as the insecticide for controlled use in this experiment because of its widespread use and relatively high toxicity.

Gas Chromatographie analysis of the amount of Guthion® transferred through the outer fabric was made by the use of analysis of variance (ANOVA) and Duncan's multiple range test. The ANOVA for experiment replication showed no significant difference among the replications of each fabric. The treatment ANOVA was highly significant at the 0.01 level.

Duncan's multiple range test further analyzed the differences in the treatment, and three groups were found to be significantly different from each other. The two types of Gore Tex®, Tyvek® and Crowntex® comprised the group permitting the least penetration. Scotch‐guard® treated chambray followed, and untreated chambray allowed the greatest penetration.  相似文献   

18.
The microwave-enhanced advanced oxidation process was used to treat fish silage for nutrient release and solids reduction prior to its use as a fertilizer for greenhouse operations. Fifteen sets of experiments with varying hydrogen peroxide dosages and treatment temperatures were conducted to evaluate the effectiveness of the process on the solubilization of fertilizer constituents. It was found that up to 26% of total Kjeldahl nitrogen could be released as ammonia with 6% hydrogen peroxide dosage at 170°C. An increase of nitrate/nitrite concentration was observed with higher hydrogen peroxide dosage and higher microwave temperature; the highest concentration of 10.2 mg L? 1 nitrates/nitrites was achieved at at 170°C and 6% H2O2 dosage. Up to 20 ± 9.5% of total chemical oxygen demand was reduced at temperatures between 120 and 170°C. Large quantities of volatile fatty acids were generated at lower temperatures, corresponding to an increase in soluble chemical oxygen demand, but not at higher temperatures. The treatment of fish silage using the microwave-enhanced advanced oxidation process appears to be promising.  相似文献   

19.
The risk assessment of pesticides on soil fauna is an issue to protect agroecosystem sustainability. Enchytraeids are recognized as relevant soil bioindicators of chemical stress in agroecosystems. In laboratory, the reproduction test was found to be sensitive to reveal chemical impacts on enchytraeids. However, it does not allow to assess the impacts on ecological functions in which enchytraeids are involved. The objectives of this study were (i) to explore the feasibility of the bait-lamina test with enchytraeids under laboratory conditions and (ii) to compare its sensitivity with the Enchytraeid Reproduction Test. We exposed individuals of Enchytraeus albidus to two commercial formulations of fungicides widely used in Europe. The EC50 reproduction for the Swing® Gold (50 g L?1 epoxiconazole and 133 g L?1 dimoxystrobin) and the Cuprafor micro® (50% copper oxychloride) were respectively estimated at 1.66?±?0.93 times the recommended dose and >?496 mg kg?1 of copper. However, no impact was found on the feeding activity of enchytraeids. The bait-lamina test thus appeared less sensitive than the Enchytraeid Reproduction Test to the tested fungicides. Despite that, this test which is achievable under laboratory conditions and allows assessing indirect effects of pesticides is quick, cheap, and easy to perform. It would deserve to be used to explore longer-exposure effects through the repeated addition of bait-lamina sticks.  相似文献   

20.

Act Force Gold®, Butaforce®, and Atraforce® are among the most commonly used pesticides in Nigeria. The lethal concentrations and the respective toxic units for the three pesticides were determined. The genotoxic effects of the three pesticides were investigated in the red blood cells of Clarias gariepinus using micronucleus (MN) assay. The 96 h LC50 was 4.75, 4.84, and 54.74 mg L−1 for Act Force Gold®, Butaforce®, and Atraforce®, respectively. The toxic units in ascending order of toxicity were 1.83, 20.66, and 21.05 for Act Force Gold®, Butaforce®, and Atraforce® respectively. The estimated safe levels based on NAS/NAE varied from 4.75 × 10−1–4.75 × 10−5 in Act Force Gold® through 4.64 × 10−1–4.85 × 10−5 in Butaforce® to 5.74–5.74 × 10−5 in Atraforce®. Fish specimens were exposed to the pesticides and sampling was done at regular intervals at days 1, 7, 14, and 21 and after another 7-day recovery period. The results obtained indicated concentration- and duration-dependent increase in % MN formation with maximum values of 3.40 ± 0.25 for Act Force Gold® on day 14 and 3.05 ± 0.36 and 2.35 ± 0.14 for Butaforce® and Atraforce® respectively on day 7 of exposure. The 7-day recovery period could not reverse the trend as the % MN values obtained were significantly different from the control. The results further support the use of MN assay in assessing the toxicity of aquatic pollutants and can be used in the monitoring of aquatic ecosystems.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号