首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过对高效、超高效滤料透过率测试台工作原理的分析得到:利用基本单分散粒子作为气溶胶测得的透过率关系与滤料真正的透过率-粒径曲线有区别,实际上是所使用实验气溶胶的综合透过率。详细研究了真正透过率与实验透过率的关系、误差和偏离产生原因,最终提出了一种独特的计算方法,实现了根据实验得到的表观透过率-粒径关系,就可以计算出真实透过率-粒径曲线,并得到了采用较为理想的实验气溶胶测试出的真实透过率的实际验证,这将大大提高高效、超高效滤料性能测试台的精度,拓展了其应用范围,为高效滤料的过滤理论和应用研究提供了比较理想的测试手段。  相似文献   

2.
大气气溶胶酸度的研究进展   总被引:1,自引:0,他引:1  
大气气溶胶的环境效应、气候效应和健康效应均与气溶胶的物理化学性质直接相关,其中大气气溶胶酸度是其重要的性质之一。大气气溶胶酸度对酸沉降、灰霾的形成具有重要作用,并影响大气非均相化学反应,相关研究已成为国际研究的热点。对国内外学者近年来在大气气溶胶酸度对大气环境与人体健康的影响、大气气溶胶酸度的影响因素与变化规律、大气气溶胶酸度/酸化缓冲能力的测定与计算方法、大气气溶胶酸性成分采集系统等方面的研究进展作了较系统的综述,并对大气气溶胶酸度研究未来的发展进行了展望。  相似文献   

3.
重金属元素易富集于大气颗粒物中且会对人体造成较大危害,为进一步提高高效空气过滤器性能,有针对性地去除含重金属元素的颗粒物,提出了有关过滤器测试标准要求外的新的人工尘源气溶胶发生溶液CuSO4,并从相关性、粒谱分布、分散度等方面对其能否满足测试气溶胶的要求进行验证分析。结果表明:(1)CuSO4和KCl间的相关系数(R2)为0.991 52,相关性很好;NaCl、KCl和CuSO4气溶胶的几何标准差分别为0.88、0.85、0.81,呈单分散且分散程度接近,可很好地满足测试气溶胶要求。(2)随发生溶液浓度的增加,气溶胶峰值粒径增大,导致分散度增加;随喷气压的增加,气溶胶峰值粒径减小,分布趋于集中。发生溶液浓度和喷气压对CuSO4和KCl气溶胶峰值粒径、粒子数浓度和分散度作用规律的一致性进一步证明了CuSO4气溶胶作为测试气溶胶的可行性。  相似文献   

4.
硫酸盐、铵盐等水溶性无机盐粒子是大气气溶胶的重要组成部分,为进一步提高高效过滤器性能测试实验的精度,提出了过滤器测试标准要求外的新的人工尘气溶胶发生液(NH_4)_2SO_4,并通过一系列实验,从相关性、粒谱分布、分散度等方面对其气溶胶粒子能否满足测试气溶胶的要求进行验证分析。实验结果表明,(NH_4)_2SO_4和KCl间的相关系数R2为0.994 78,相关性很好;NaCl、KCl和(NH_4)_2SO_4气溶胶的几何标准差分别为0.88、0.85和0.87,呈单分散且分散程度接近,可很好的满足测试气溶胶要求。还获得了可控参数喷气压力与发生溶液质量浓度对(NH_4)_2SO_4气溶胶粒谱分布的影响规律:随喷气压力的增加,气溶胶粒子的粒径减小,分布集中;而随发生溶液质量浓度的增加,粒径增大,导致分散度增加。质量浓度和喷气压力对(NH_4)_2SO_4和KCl气溶胶粒径和分散度作用规律的一致性进一步表明(NH_4)_2SO_4作为测试气溶胶的可行性。  相似文献   

5.
含碳气溶胶研究进展:有机碳和元素碳   总被引:20,自引:0,他引:20  
含碳气溶胶是我国大气区域性复合型污染的重要物种,对全球气候变化、辐射强迫、能见度、环境质量、人类健康等会产生重要影响.主要从含碳气溶胶来源及成因、环境影响、样品采集及测试等方面对国内外相关研究进行了评述,讨论了有机碳和元素碳研究中存在的关键和难点问题,并对其发展前景进行了展望.  相似文献   

6.
针对常用涤纶滤料,分别采用不同道数的缝纫线缝合和在缝纫接口处的针孔上涂胶等不同的缝合工艺,实验测试并对比了涤纶滤料在不同的缝合工艺下的静态过滤效率,并讨论了滤袋缝合工艺对PM2.5过滤效率的影响。结果表明,清洁滤料在环境气溶胶中,缝纫线缝制道数越多,过滤效率就越低,每增加一道缝纫线过滤效率就降低1%~6%左右;采用胶合工艺将滤袋缝合处的针孔涂胶覆盖,对于粒径大于1μm以上的颗粒物的过滤效率有明显提高,最大提高值达7%;温度对胶合后的缝纫接口影响较小,过滤风速对过滤效率和过滤阻力影响较大。  相似文献   

7.
大气气溶胶物质来源研究是大气污染研究极为重要的内容,它对污染物质的追踪评价具有较大的意义。本文较为系统地讨论了大气气溶胶物质来源研究的现状。从气溶胶的特征上分别论述气溶胶物质来源的矿物学( 颗粒) 、无机化学和有机化学研究的进展。  相似文献   

8.
针对办公环境PM2.5的净化问题,现场测试了以3种不同过滤面积的驻极体空气过滤器为核心过滤元件的空气净化器的过滤性能,并与普通高效微粒空气过滤器(high-efficiency particulate air,HEPA)、初效碳纤维滤层和活性炭滤网等进行了对比.测试点为上海某三楼办公室座位区离地面1.1m处人体坐姿呼吸平面.采用蜡烛烟雾作为室内微细颗粒污染物的来源.分别测试了40 min内PM2.5的质量浓度衰减值和相应运行功率,并计算了净化器处理风量和洁净空气量.结果表明,过滤面积在0.20~0.54 m2范围内驻极体过滤器的过滤效率随面积增加而提高;过滤面积为0.29 m2的驻极体处理风量最大;以洁净空气量与功率的比值作为指标,可以直观判断出净化效果最好的是初效滤网叠加过滤面积为0.54m2的驻极体过滤器;该工况下40 min内PM2.5浓度衰减率与HEPA几乎相同且均接近70%,但是洁净空气量大于HEPA.  相似文献   

9.
含碳气溶胶采样偏差是影响含碳气溶胶及大气颗粒物精确测定的主要因素之一,进而影响大气颗粒物的源解析、环境效应分析、污染防治对策制定等。分析了含碳气溶胶采样偏差的产生原因,综述了目前研究所用的衡量采样偏差的方法,并分析了方法的优缺点,探讨了引起采样偏差的主要影响因素,最后对今后的相关研究方向进行了展望。  相似文献   

10.
频繁的滤材堵塞是大气气溶胶采样器(流量大于500 m3/h)运行中常见的问题,安装预分离器是缓解这一问题的有效途径之一。研究了可用于这种气溶胶取样器预分离的旋风分离器,确定了使用轴流进气直流式的结构。在惯性分离理论的基础上,提出了切割粒径的计算方法。建立了流量为700~800 m3/h的预分离器性能测试装置和方法,并对3个旋风分离器性能进行了测试。实验结果表明:3个旋风分离器的切割粒径在12~14.5μm,与计算较好地符合;性能最佳的旋风分离器的切割粒径为14.5μm,10μm颗粒的透过率为73%,符合技术要求。  相似文献   

11.
In this paper, we develop a new and efficient approach for high dimensional atmospheric aerosol thermodynamic equilibrium predictions. The multi-phase and multi-component aerosol thermodynamic input–output systems are solved by the high dimensional model representation (HDMR) method combining with the moving multiple cut points. The developed approach improves the accuracy of numerical simulations for the general high dimensional input–output systems compared with the standard cut-HDMR method. It can simulate efficiently the atmospheric aerosol thermodynamic equilibrium problems in a large range of aerosol concentrations from 10?10 to 10?6 mol m?3. Numerical experiments show that the approach has great computational efficiency and the CPU-time of the approach is much less than that of ISORROPIA. The method does excellent performance in predicting high dimensional aerosol thermodynamic components as well as particulate matters (PMs).  相似文献   

12.
Fixed beds of sorbent media are used for the evaluation of poiynuclear aromatic hydrocarbons (PAH) present in air. Twostage sampling and separate extraction and analyses of PAH associated with aerosol particles and those present in the vapor state are usually performed. The ability of commonly used sorbents to retain particulate matter introduces a potential for reducing the time and cost of PAH evaluation procedures.

The filtration efficiency of three sorbent media, Florisil, XAD-2, and polyurethanefoam (PUF), for particles in 0.1 to 1 µm size range was studied using airflow rates from 4 to 2501 /mm through a PS 1 sorbent cartridge. Theoretical considerations were used to identify the principal filtration mechanisms and to assess the predictability of the aerosol filtration performance of sorbent filters. The results of this study indicate XAD-2 to be an efficient filtration medium owing to the electrostatic enhancement of capturing and retaining aerosol particles.

As a result of theoretical considerations, Brownian diffusion and inertial deposition were found to be major filtration mechanisms accompanied by electrostatic effects. While the efficiency of the diffusional deposition mechanism was reasonably well predicted with available theories, modeling of submicron particle impaction at higher fluid velocities appeared to be inadequate. Further developments are suggested to improve our understanding of filtration phenomena in sorbent beds under high flow rate conditions.  相似文献   

13.
Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelometer; agreement was within 20% in every case.  相似文献   

14.
ABSTRACT

Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelom-eter; agreement was within 20% in every case.  相似文献   

15.
A major difficulty encountered in laboratory research on the atmospheric interaction of an aerosol-gas system is the unstable nature of the aerosol phase. Previously reported aerosol stabilizing techniques often severely alter the aerosol so that laboratory results cannot be validly extrapolated to the atmospheric environment. A new technique which does not alter the nature of the aerosol is described in this paper.

Aerosol particles are deposited on an inert substrate such as Teflon beads. The deposition is carried out in a fluidized-bed to ensure discrete aerosol deposition and to achieve a uniform distribution of aerosol concentration on the supporting beads. Aerosol-gas interactions can be investigated conveniently by exposing these stabilized aerosols to the reacting gases in dynamic or static systems. Laboratory results obtained by using stabilized aerosols may be extrapolated to the atmospheric environment.

This aerosol stabilizing technique was incorporated into an investigation of the particulate-catalyzed atmospheric oxidation of sulfur dioxide. Teflon beads with deposited aerosol particles of CuCl2, MnCl2, and NaCI were exposed to 4–42 ppm of sulfur dioxide in a plug flow reactor. The rate of oxidation of sulfur dioxide was found to be influenced by type of catalyst, concentration of catalyst, relative humidity and concentration of sulfur dioxide. The rate of oxidation by sodium chloride particulate was measurable at low to moderate relative humidities (45–60%), but the rate was several times higher when the sodium chloride catalyst particles change from solid form into droplet form at high relative humidities (>80%).  相似文献   

16.
17.
This symposium sponsored by the Fiber Society and the Filtration Society has provided a clear indication that the “black-art” era of filtration has passed or is on its way out. The R & D efforts reviewed here by investigators from diverse disciplines provide evidence that these high efficiency particulate control devices can be made to function not only more consistently at high levels but now with even better control of the fine, health damaging particles. The outstanding improvement in every filtration parameter, reliably attainable by aerosol charging and/or by imposing an electric field on the filter, indicates clearly that fabric filtration has now reached an even higher plateau in particulate control technology.  相似文献   

18.
Mössbauer spectroscopy was applied to analyze the iron compounds present in atmospheric aerosol. As a significant part of air pollution, especially in winter months, iron appeared in the form of iron sulfides (FeS2, FeS and Fe1−xS), which were products of coal combustion. Also, iron oxyhydroxides and iron oxides, mostly α-Fe2O3 (bulk) and in the form of ultra fine particles in superparamagnetic state were observed. The concentration of iron in atmospheric air was calculated from the experimental spectra. Seasonal variations of iron concentration in atmospheric air measured over twenty years in the mountain region of Poland are discussed.  相似文献   

19.
A wet effluent denuder - aerosol collector (WEDD/AC) system coupled to ion chromatography for the measurement of atmospheric HONO, HNO3 and particulate nitrite, nitrate and sulfate is described. Several experiments were performed to outline its performance. The main features are low detection limits and a fast response to concentration changes which enables measurements with high time resolution. In contrast to highly soluble gases, the collection efficiency of less soluble gases is shown to depend on the Henry’s law constant rather than on the uptake kinetics. To improve the collection efficiency for HONO under simultaneous presence of acidifying gases, NaHCO3 was added to the effluent solution. The system was tested in a field campaign in the suburban area of Zürich, Switzerland. Elevated concentrations of nitrous acid up to 3.2 ppb were detected during the measurement campaign. The diurnal variation of the HONO to NO2 ratio clearly points to a fast and persistent process producing HONO in the atmosphere. The correlation with NOx and black carbon suggests a heterogeneous formation of HONO, and is consistent with a reaction on soot aerosol particle surfaces postulated from previous laboratory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号