首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chu L  Wang J  Dong J  Liu H  Sun X 《Chemosphere》2012,86(4):409-414
In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H2O2 and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H2O2 dosage. At an initial pH of less than 6.5 and H2O2 concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1 h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality.  相似文献   

2.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   

3.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

4.
5.
A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H2O2, 6 and 65 g kg−1) and FeSO4 were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected.  相似文献   

6.
Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III) = 1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe2O3) and iron silicate composite ((Mg, Fe)SiO3) existed on Fe-WR, while clinoferrosilite (FeSiO3) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H2O2 system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (kobs) for cyanide removal were 0.49 (±0.081) h−1. Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H2O2.  相似文献   

7.
Liu CP  Luo CL  Xu XH  Wu CA  Li FB  Zhang G 《Chemosphere》2012,86(11):1106-1111
The ability of calcium peroxide (CaO2) to immobilize As of contaminated soil was studied using pot and field experiments. In pot experiment, CaO2 applied at 2.5 and 5 g kg−1 significantly increased celery shoot weight and decreased shoot As accumulation, which was ascribed to the formation of stable crystalline Fe and Al oxides bound As and the reduction of labile As fractions in the soil. The labile As fractions were pH dependent and it followed a “V” shaped profile with the change of pH. In field experiment, the dose of CaO2 application at 750 kg ha−1 was optimal and at which the celery was found to produce the highest biomass (63.4 Mg ha−1) and lowest As concentration (0.43 mg kg−1). CaO2 probably has a promising potential as soil amendment to treat As contaminated soils.  相似文献   

8.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

9.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

10.
This work aimed to evaluate the effectiveness of nutrients, H2O2, and tourmaline on the bioremediation of fields where the soil was contaminated with polybrominated diethyl ethers (PBDEs). The results showed that 39.2, 38.3, and 48.1 % of total PBDE removal was observed in microcosms with the addition of nutrients, such as NaNO3, NH4Cl, and NH4NO3, respectively, compared to only 15.2 and 5.8 % of PBDE removal from soil with added Aspergillus niger and control soil, respectively, after 50 days of incubation. In addition, 50.8 and 56.5 % of total PBDE removal were observed in microcosms with 0.5 and 1 μL H2O2. The addition of tourmaline increased total PBDE removal to 32.4 %. Significant increases in soil enzymatic activity with PBDE degraders and bacterial communities were observed using polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE). These observations suggested that the combination of inorganic nutrients with chemical, mineral, and biological treatment could improve the PBDE removal efficiency. However, the combination of H2O2 and biological treatment processes is the most efficient technology. This combination of technologies would not cause adverse effects on the subsequent bioremediation process. Therefore, this work offers a potential alternative for the remediation of soil contaminated with PBDE pollutants.  相似文献   

11.
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5 μM and H2O2 at 300 μM slightly increased cell lethality from a control value of 5.4 ± 0.5% (mean ± standard deviation of four experiments) to 7.8 ± 1.3% and 9.0 ± 0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2 ± 1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3–5 μM) but not on H2O2 concentration (30–300 μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn2+ concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn2+, significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn2+-dependent manner.  相似文献   

12.
13.
含吡啶有机废水物化预处理工艺   总被引:1,自引:0,他引:1  
对含吡啶有机废水进行分类收集,分质处理,确定了蒸发脱盐-微电解-芬顿氧化预处理工艺路线。实验表明,蒸发脱盐阶段,pH值为5时,COD去除率达62.77%;微电解阶段,pH值为4、反应时间为2.5 h时,COD去除率达24.49%;Fenton试剂氧化阶段,pH值为4,30%H2O2投加量为3.5 ml/L,Fe2+与H2O2摩尔比为1∶20,反应时间为2.5 h时,COD去除率达30.41%。经预处理,废水B/C比从0.075上升至0.48,3种特征吡啶的去除率均达到95%以上。  相似文献   

14.
Oxidation of bisphenol F (BPF) by manganese dioxide   总被引:1,自引:0,他引:1  
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42− > Cl > NO3 ≈ SO42−, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.  相似文献   

15.
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe+2, pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2?=?400 mg/L, Fe+2?=?40 mg/L, pH?=?3, irradiation time?=?150 min, and temperature?=?30 °C) for 1,000 mg/L oil load was found to be 72 %. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R 2?=?0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe+2, pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6 %.  相似文献   

16.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

17.
Wang HC  Liang HS  Chang MB 《Chemosphere》2011,82(8):1090-1095
In this study, we examined the experimental catalytic oxidation of gaseous monochlorobenzene (MCBz) with O3 over Fe2O3 in a packed bed reactor to investigate the feasibility of economical low temperature decomposition at a high space velocity (SV). We investigated the effects of several reaction parameters (temperature, O3 concentration, and SV) on the MCBz oxidation. At 150 °C, the conversion of MCBz over Fe2O3 in the absence of O3 was only 3%; it increased to 91% over Fe2O3 in the presence of 1200 ppm of O3 at a high SV of 83 s−1. A long-term operation study revealed that the conversion of MCBz was stable for more than 96 h. In the steady state, the carbon and chlorine balances were 88% and 86%, respectively. Applying a Langmuir-Hinshelwood kinetic model, we estimated an activation energy of 16.7 kJ mol−1 for MCBz oxidation over Fe2O3 in the presence of O3.  相似文献   

18.
释氧材料经济有效的释氧是地下水原位生物修复的关键因素。实验通过在释氧材料中加入膨润土、磷酸二氢钾和硫酸铵等,改进释氧材料的性能。柱实验结果显示,该释氧材料释氧速率缓慢,释氧时间长,可以使溶液中DO长期保持在5 mg/L以上;另外,释氧材料中添加的缓冲剂及天然含水层介质对pH值有较好的缓冲作用,可以使pH值达到后续生物修复的要求。  相似文献   

19.
Liu X  Zhao W  Sun K  Zhang G  Zhao Y 《Chemosphere》2011,82(5):773-777
The conventional hydrothermal reaction with iron powder, NaOH and H2O as reactants was reported to occur at temperature above 423 K, and iron oxides (Fe3O4 and NaFeO2) and hydrogen were produced. In this study, microwave heating was adopted to take the place of conventional heating to induce the hydrothermal reaction. Under microwave irradiation, NaOH and H2O absorbed microwave energy by space charge polarization and dipolar polarization and instantly converted it into thermal energy, which initiated the hydrothermal reaction that involved with zero-valent iron. X-ray diffraction (XRD) analysis found Fe3O4/NaFeO2 and confirmed the occurrence of microwave-induced hydrothermal reaction. The developed microwave-hydrothermal reaction was employed for the dechlorination of PCBs. Hexadecane containing 100 mg L−1 of Aroclor1254 was used as simulative transformer oil, and the dechlorination of PCBs was evaluated by GC/ECD, GC/MS and ion chromatography. For PCBs in 10 mL simulative transformer oil, almost complete dechlorination was achieved by 750 W microwave irradiation for 10 min, with 0.3 g iron powder, 0.3 g NaOH and 0.6 mL H2O added. The effects of important factors including microwave power and the amounts of reactants added, on the dechlorination degree were investigated, moreover, the dechlorination mechanism was suggested. Microwave irradiation combined with the common and cheap materials, iron powder, NaOH and H2O, might provide a fast and cost-effective method for the treatment of PCBs-containing wastes.  相似文献   

20.
Wang W  Qu Y  Yang B  Liu X  Su W 《Chemosphere》2012,86(4):376-382
Pyrite is a common mineral at many mining sites. In this study, the mineral pyrite was studied as a Fenton-like reagent for environmental concerns. We selected lactate as a model target molecule to evaluate the Fenton-like catalytic efficiency of pyrite upon organic oxidation. A complete set of control experiments in both aerobic and anaerobic atmospheres unequivocally established that the pyrite in aqueous solution could spontaneously in situ generate OH and H2O2, serving as a Fenton-like reagent to catalyze the oxidation of lactate to pyruvate with no need for additional H2O2. We called it the pyrite-only Fenton-like (PF) reagent. Monitoring concentration changes of lactate and pyruvate with the time indicated that the pyrite mediated the favorable pyruvate formation at pH 4.5, 60 °C, under air atmosphere. The PF reaction could be stimulated by visible light illumination. Under the optimum conditions, up to 50% of lactate was degraded within 10 d. The results suggest that pyrite and its Fenton-like processes may be potentially practical in wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号