首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.  相似文献   

2.
Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.  相似文献   

3.
Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.  相似文献   

4.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   

5.
We conducted kinetic batch experiments to determine the reduction of Chromium(VI) by a type strain of Shewanella alga (BrY-MT) ATCC 55627. Chromium(VI) was reduced to Chromium(III) by BrY-MT grown in three different substrates: BHIB (brain heart infusion broth), TSB (tryptic soy broth), and M9 (minimum broth). Four different Cr(VI) concentrations 4.836, 10.00, 37.125, and 260.00 mg l-1 were reduced at different rates by BrY-MT in both aerobic and anaerobic conditions. BrY-MT grown in BHIB reduced the maximum amount of Cr(VI) followed by TSB and M9. Carbondioxide produced from bacterial respiration varied with and without Cr(VI) under both aerobic and anaerobic conditions. The Cr(VI) reduction data under anaerobic condition was fitted by a monod model to determine the bacterial kinetic parameters. The kinetic parameters determined by fitting the anaerobic experimental data were used to run a forward simulation for experiments conducted under aerobic conditions. The monod model was modified to account for an inhibition parameter for the Cr(VI) experiment at 260 mg l-1. All the parameters varied within a narrow range, and were distinct for different substrates. Our studies show that, successful in situ bioremediation of Cr(VI) is depended on the type of substrates (electron donors) and the concentration of Cr(VI) in geologic medium.  相似文献   

6.
Mak MS  Lo IM 《Chemosphere》2011,84(2):234-240
This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).  相似文献   

7.

Purpose

Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. The purpose of this work is to synthesize α-Fe2O3 nanofibers for potential applications in removal and recovery of noxious Cr(VI) from wastewater.

Methods

α-Fe2O3 nanofibers were synthesized via a simple hydrothermal route followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. Batch adsorption experiments were conducted, and Fourier transform infrared spectra were recorded before and after adsorption to investigate the Cr(VI) removal performance and adsorption mechanism. Langmuir and Freundlich modes were employed to analyze the adsorption behavior of Cr(VI) on the α-Fe2O3 nanofibers.

Results

Very thin and porous α-Fe2O3 nanofibers have been successfully synthesized for investigation of Cr(VI) removal capability from synthetic wastewater. Batch experiments revealed that the as-prepared α-Fe2O3 nanofibers exhibited excellent Cr(VI) removal performance with a maximum adsorption capacity of 16.17 mg g?1. Furthermore, the adsorption capacity almost kept unchanged after recycling and reusing. The Cr(VI) adsorption process was found to follow the pseudo-second-order kinetics model, and the corresponding thermodynamic parameters ΔG°, ΔH°, and ΔS° at 298 K were calculated to be ?26.60 kJ?mol?1, ?3.32 kJ?mol?1, and 78.12 J?mol?1 K?1, respectively.

Conclusions

The as-prepared α-Fe2O3 nanofibers can be utilized as efficient low-cost nano-absorbents for removal and recovery of Cr(VI) from wastewater.  相似文献   

8.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   

9.
The combination of zero-valent iron (Fe0) and iron oxide-coated sand (IOCS) was used to remove Cr(VI) and As(V) from groundwater in this study. The efficiency and the removal mechanism of Cr(VI) and As(V) by using this combination, with the influence of humic acid (HA), were investigated using batch experiments. Results showed that, compared to using Fe0 or IOCS alone, the Fe0-IOCS can perform better on the removal of both Cr(VI) and As(V). Metal extraction studies showed that As(V) was mainly removed by IOCS and iron corrosion products while Cr(VI) was mainly removed by Fe0 and its corrosion products. Competition was found between Cr(VI) and As(V) for the adsorption sites on the iron corrosion products. HA had shown insignificant effects on Cr(VI) removal but some effects on As(V) removal kinetics. As(V) was adsorbed on IOCS at the earlier stage, but adsorbed/coprecipitated with the iron corrosion products at the later stage.  相似文献   

10.

Zero-valent iron (Fe0) has been widely used for Cr(VI) removal; however, the removal mechanisms of Cr(VI) from aqueous solution under complex hydrogeochemical conditions were poorly understood. In this research, the mixed materials containing cast iron and activated carbon were packed in columns for the treatment of aqueous Cr(VI)-Cr(III) in groundwater with high concentration of Ca2+, Mg2+, HCO3 , NO3 , and SO4 2−. We investigate the influences of those ions on Cr(VI) removal, especially emphasizing on the reaction mechanisms and associated precipitations which may lead to porosity loss by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) techniques. The results show that the precipitations accumulated on the material surface were (Fe/Cr) (oxy)hydroxide, mixed Fe(III)-Cr(III) (oxy)hydroxides, Fe2O3, CaCO3, and MgCO3. During these reactions, the Cr(VI) was reduced to Cr(III) coupled with the oxidated Fe0 to Fe(II) through the galvanic corrosion formed by the Fe0-C and/or the direct electron transfer between Fe0 and Cr(VI). In addition, Cr(VI) could be reduced by aqueous Fe(II), which dominated the whole removal efficiency. The primary aqueous Cr(III) was completely removed together with Cr(III) reduced from Cr(VI) even when Cr(VI) was detected in the effluent, which meant that the aqueous Cr(III) could occupy the adsorption sites. In general, the combined system was useful for the Cr(VI)-Cr(III) treatment based on galvanic corrosion, and the hardness ions had a negative effect on Cr(VI) removal by forming the carbonates which might promote the passivation of materials and decrease the removal capacity of the system.

  相似文献   

11.
以2-膦酸丁烷-1,2,4三羧酸(PBTCA)为稳定剂,通过FeCl3.6H2O与NaBH4反应,利用液相还原法制备稳定纳米级零价铁颗粒(P-NZVI),并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)及X射线衍射(XRD)进行表征,颗粒平均粒径为73 nm。考察了Cr(Ⅵ)溶液初始浓度、pH、NZVI投加量、温度等条件对Cr(Ⅵ)去除效果的影响,并与同等条件下不加稳定剂制备的纳米铁(N-NZVI)进行对比。结果表明:Cr(Ⅵ)的去除率随温度和纳米铁投加量增加而升高,随pH和Cr(Ⅵ)溶液初始浓度升高而降低。在相同实验条件下,P-NZVI对Cr(Ⅵ)的去除效果明显优于N-NZVI,表明改性后纳米铁在地表水原位修复领域具有较好的应用前景。  相似文献   

12.
XANES study of Cr sorbed by a kitchen waste compost from water   总被引:1,自引:0,他引:1  
Wei YL  Lee YC  Hsieh HF 《Chemosphere》2005,61(7):1051-1060
A kitchen waste compost was used to sorb Cr for various times from water containing either Cr(NO3)3 or CrO3 in different concentrations. Scanning electron microscopy (SEM) results show that the composts have been partially oxidized by Cr(VI) during the sorption experiments. X-ray absorption near edge structure (XANES) simulation suggests that about 54.1-61.0% Cr sorbed on the compost is in form of organic Cr(III) through ionic exchange process with the rest being existent as Cr(NO3)3 in the Cr(III) sorption case; no Cr(OH)3 is observed or expected because the solution pH after sorption experiments is or= 5.94. Moreover, organic Cr(III) represents about 51.7-69.0% of the total sorbed Cr, and the rest (6.1-28.5%) is Cr(VI).  相似文献   

13.
In this present study, the biosorption of Cr(VI) and Zn(II) ions from synthetic aqueous solution on defatted J atropha oil cake (DJOC) was investigated. The effect of various process parameters such as the initial pH, adsorbent dosage, initial metal ion concentration and contact time has been studied in batch-stirred experiments. Maximum removal of Cr(VI) and Zn(II) ions in aqueous solution was observed at pH 2.0 and pH. 5.0, respectively. The removal efficiency of Cr(VI) and Zn(II) ions from the aqueous solution was found to be 72.56 and 79.81 %, respectively, for initial metal ion concentration of 500 mg/L at 6 g/L dosage concentration. The biosorbent was characterized by Fourier transform infrared, scanning electron microscopy and zero point charge. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models and the best fit is found to be with the Freundlich isotherm for both Cr(VI) and Zn(II) metal ions. The kinetic data obtained at different metal ion concentration have been analysed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and were found to follow the pseudo-second-order kinetic model. The values of mass transfer diffusion coefficients (D e) were determined by Boyd model and compared with literature values. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were analysed using the equilibrium constant values (K e) obtained from experimental data at different temperatures. The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature. The results indicate that DJOC was shown to be a promising adsorbent for the removal of Cr(VI) and Zn(II) ions from aqueous solution.  相似文献   

14.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

15.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.  相似文献   

16.
Chen Z  Huang Z  Cheng Y  Pan D  Pan X  Yu M  Pan Z  Lin Z  Guan X  Wu Z 《Chemosphere》2012,87(3):211-216
In this study, we investigated the Cr(VI) uptake mechanism in an indigenous Cr(VI)-tolerant bacterial strain -Bacillus cereus through batch and microscopic experiments. We found that both the cells and the supernatant collected from B. cereus cultivation could reduce Cr(VI). The valence state analysis revealed the complete transformation from Cr(VI) into Cr(III) by living B. cereus. Further X-ray absorption fine structure and Fourier transform infrared analyses showed that the reduced Cr(III) was coordinated with carboxyl and amido functional groups from either the cells or supernatant. Scanning electron microscopy and atomic force microscopy observation showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. However, Cr(III) could also be detected in bacterial inner portions by using transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy. Through quantitative analysis of chromium distribution, we determined the binding ratio of Cr(III) in supernatant, cell debris and cytoplasm as 22%, 54% and 24%, respectively. Finally, we further discussed the role of bacterium-origin soluble organic molecules to the remediation of Cr(VI) pollutants.  相似文献   

17.
修复铬污染地下水的可渗透反应墙介质筛选   总被引:1,自引:0,他引:1  
通过实验研究筛选出一种经济、高效的用于修复铬污染地下水的可渗透反应墙(PRB)介质。实验以铬污染地下水为研究对象,分别对Fe0、Fe0+石英砂和包覆型零价铁填料进行了筛选实验,选取处理效果好且经济可行的包覆型零价铁材料作为PRB反应介质。结果表明,以包覆型零价铁材料作为PRB反应介质,大大提高了铁粉的利用效率,且缓解了系统堵塞严重的问题。以包覆型零价铁材料作为PRB反应介质修复Cr(VI)污染地下水是可行的。  相似文献   

18.
In Thun, Switzerland, a permeable reactive barrier (PRB) for Cr(VI) reduction by gray cast iron was installed in May 2008. The PRB is composed of a double array of vertical piles containing iron shavings and gravel. The aquifer in Thun is almost saturated with dissolved oxygen and the groundwater flow velocities are ca. 10-15m/day. Two years after PRB installation Cr(VI) concentrations still permanently exceed the Swiss threshold value for contaminated sites downstream of the barrier at selected localities. Groundwater δ(53/52)Cr(SRM979) measurements were used to track Cr(VI) reduction induced by the PRB. δ(53/52)Cr(SRM979) values of two samples downstream of the PRB showed a clear fractionation towards more positive values compared to four samples from the hotspot, which is clear evidence of Cr(VI) reduction induced by the PRB. Another downstream sample did not show a shift to more positive δ(53/52)Cr(SRM979) values. Because this latter location correlates with the highest downstream Cr(VI) concentration it is proposed that a part of the Cr(VI) plume is bypassing the barrier. Using a Rayleigh fractionation model a minimum present-day overall Cr(VI) reduction efficiency of ca. 15% was estimated. A series of 2D model simulations, including the fractionation of Cr isotopes, confirm that only a PRB bypass of parts of the Cr(VI) plume can lead to the observed values. Additionally, the simulations revealed that the proposed bypass occurs due to an insufficient permeability of the individual PRB piles. It is concluded that with this type of PRB a complete and long-lasting Cr(VI) reduction is extremely difficult to achieve for Cr(VI) contaminations located in nearly oxygen and calcium carbonate saturated aquifer in a regime of high groundwater velocities. Additional remediation action would limit the environmental impact and allow to reach target concentrations.  相似文献   

19.
Reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in the stomach prior to absorption is a well-recognized detoxification process thought to limit the toxicity of ingested Cr(VI). However, administration of high concentrations of Cr(VI) in drinking water cause mouse small intestinal tumors, and quantitative measures of Cr(VI) reduction rate and capacity for rodent stomach contents are needed for interspecies extrapolation using physiologically-based toxicokinetic (PBTK) models. Ex vivo studies using stomach contents of rats and mice were conducted to quantify Cr(VI) reduction rate and capacity for loading rates (1-400 mg Cr(VI) L−1 stomach contents) in the range of recent bioassays. Cr(VI) reduction was measured with speciated isotope dilution mass spectrometry to quantify dynamic Cr(VI) and Cr(III) concentrations in stomach contents at select time points over 1 h. Cr(VI) reduction followed mixed second-order kinetics, dependent upon concentrations of both Cr(VI) and the native reducing agents. Approximately 16 mg Cr(VI)-equivalents of reducing capacity per L of fed stomach contents (containing gastric secretions, saliva, water and food) was found for both species. The second-order rate constants were 0.2 and 0.3 L mg−1 h−1 for mice and rats, respectively. These findings support that, at the doses that caused cancer in the mouse small intestine (?20 mg Cr(VI) L−1 in drinking water), the reducing capacity of stomach contents was likely exceeded. Thus, for extrapolation of target tissue dose in risk assessment, PBTK models are necessary to account for competing kinetic rates including second order capacity-limited reduction of Cr(VI) to Cr(III).  相似文献   

20.
A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H3PO4. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb’s Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号