首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Persistence of 14C-carbonyl carbofuran was measured in Pacific Northwest soils that had received 1-14 applications of the insecticide for root weevil control on perennial crops. Insecticide decay curves were obtained in nonautoclaved soil and several autoclaved soil samples from previously-treated fields and in nonautoclaved soils from paired control sites not previously treated with carbofuran. The insecticide usually degraded faster in soil from previously-treated fields than in soil from corresponding control fields. Among 26 previously-treated fields, the pseudo half-life (time for 50% loss) of carbofuran was less than one wk in 11 soils, 1-3 wks in 8 soils and greater than 4 wks in the remaining soils. Among the nontreated control fields the pseudo half-life was greater than 2 wks in all cases and greater than 15 wks in 5 of the soils. The carbofuran decay curve always possessed an initial lag phase where soil mixing enhanced insecticide decline. Carbofuran degraded very slowly in autoclaved soil samples. The half-life of carbofuran exceeded 16 wk in all autoclaved soils tested and in most instances 85-90% of the original dosage remained when the tests were terminated 112 days after treatment. These results provided evidence that many of the soils which received applications of carbofuran over the past several years have developed a capacity to degrade carbofuran very rapidly.  相似文献   

2.
Abstract

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofiiran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofiiran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofiiran when compared to untreated soils. Disappearance rates of [14C‐URL (uniformly ring labeled)] carbofiiran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

3.
The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.  相似文献   

4.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

5.
Abstract

The persistence of metsulfuron‐methyl in sandy loam and clay soil incubated at different temperatures and moistures contents was investigated under laboratory conditions using longbean (Vigna sesquipedalis L.) as bioassay species. A significant degradation of metsulfuron‐methyl was observed in non‐autoclaved soil rather than the autoclaved soil sample. At higher temperature, the degradation rate in non‐autoclaved soil improved with increasing soil moisture content. In non‐autoclaved sandy loam and clay soil, the half‐life was reduced from 9.0 to 5.7 and from 11.2 to 4.6 days, respectively when moisture level of sandy loam increased from 20 to 80% field capacity at 35°C. In the autoclaved soil, herbicide residue seems to have been broken down by non‐biological process. The rate of dissipation was slightly increased after the second application of the herbicide to non‐autoclaved soils but not in autoclaved soil, indicating the importance of microorganisms in the breakdown process.  相似文献   

6.
Abstract

In a laboratory study, the persistence of carbofuran and its 3‐hydroxy‐ and 3‐keto‐metabolites was examined separately over 16 wk in sterile and natural organic (muck) and mineral (loam) soils. Carbofuran was relatively persistent in sterile soils; at 8 wk 77% remained in the sterile muck and about 50% remained in the sterile loam. In the natural muck 25% of initial carbofuran remained at 8 wk whereas in the natural loam carbofuran had completely disappeared by that time. The 3‐ketocarbofuran was very short‐lived even in the sterile muck where only 50% remained at 1 wk. The 3‐hydroxycarbofuran degraded appreciably on zero day in the natural soils (with conversion to 3‐ketocarbofuran) and about 90% had disappeared in 1 wk. A more detailed study of the persistence of 3‐hydroxycarbofuran in the natural soils showed complete disappearance in 2 days in loam and in 3 days in muck. The 3‐ketocarbofuran produced from the 3‐hydroxy‐carbofuran reached a maximum concentration in 1 day and then disappeared within 4 days in loam and about 1 wk in muck.  相似文献   

7.
The objectives of this work were estimate the reaction rates of hydrolysis of carbosulfan to carbofuran and subsequent degradation of this last compound in irrigated rice fields, and the respective half life, in aquatic environment and soil solution, by mean of numerical solution of differential ordinary linear equations system that describes the kinetics of insecticide concentrations. The results indicated that the carbosulfan and carbofuran have low persistence in water and medium persistence in soil solution of tropical irrigated rice fields. However, both compounds can be found in laminar water and soil solution in concentration above environmental and human safety limits.  相似文献   

8.
In May 1983, granular formulations of carbofuran, chlorpyrifos, disulfoton, fonofos, isofenphos, phorate, and terbufos were applied in incorporated bands to duplicate 2 m2 field plots of clay loam. Insecticide concentrations were determined in the bands at 0,1,2,3,4,6,8,10,12,16, and 20 wk. Following spring cultivation, the insecticides were applied to the same plots in 1984 and 1985. In addition, carbofuran was applied to previously untreated plots in 1984 and all 7 materials were applied to previously untreated plots in 1985. Sampling and analysis were carried out as in 1983. Persistence was assessed on the basis of the disappearance rates measured for the 1st 8 wk and of a calculated Effectiveness Potential (the ratio of the average residue in the upper 5 cm of the band at 8, 10 and 12 wk and the published LC95 for western corn rootworm in clay loam soil). Soils treated with carbofuran and isofenphos in 1984 and all soils treated in 1985 were tested for anti-insecticide activity. Soil cores from some carbofuran, chlorpyrifos and terbufos treated plots were sectioned vertically to establish the distribution of the insecticides during 1985. In addition, granular and pure chemical forms of isofenphos and carbofuran were applied at 10 ppm to anti-isofenphos and anti-carbofuran active and control soils (from field plots) maintained at 10 and 20% moisture in the laboratory to assess the effect of formulation and moisture on persistence in active soils. Insecticide concentrations were determined at 0,1,3,7, 10,14,21,28, and 35 days. The persistence of chlorpyrifos, terbufos and phorate was relatively constant over the 3 years and between plots receiving single and multiple treatments. Disulfoton and fonofos behavior was more variable and that of carbofuran and isofenphos was extremely variable. Anti-insecticide activity against carbofuran and isofenphos was detectable 2 wk after an initial application and was still present the following spring. Anti-insecticide activity against fonofos, terbufos sulfoxide, phorate sulfone and disulfoton sulfone was also generated in this soil. Anti-insecticide activity against chlorpyrifos, disulfoton, terbufos and phorate was not present. Carbofuran, chlorpyrifos and terbufos (+ metabolites) present in the upper 5 cm of soil averaged 93, 94 and 94%, respectively, of the total core contents over 12 wk. Significant moisture dependent differences were observed between the behavior of granular carbofuran and granular isofenphos in anti-insecticide active soils.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Abstract

Pretreatment of a Drummer‐Catlin soil mixture with granular formulations of carbofuran or trimethacarb enhanced biodegradation of subsequent treatments with the technical formulations. Degradation of carbofuran was enhanced by pretreatments with trimethacarb, and degradation of trimethacarb was enhanced by pretreatments with carbofuran. Bendiocarb degradation was enhanced by pretreatments of soil with carbofuran or trimethacarb. In bioassays with southern corn rootworm larvae, biological activity of carbofuran, trimethacarb, and bendiocarb was rapidly lost in soils pretreated with granular formulations. Pretreatment of soil with granular terbufos did not enhance the biodegradation of subsequent applications of technical terbufos. Several microbial biomass assays showed an increase in specific carbofuran‐degrading bacteria in soils that were pretreated with carbofuran. Bacteria were isolated that could grow on carbofuran and apparently degrade it when present with another carbon source.  相似文献   

10.
Abstract

A laboratory study was conducted to examine the effects of five insecticides on microbial and enzymatic activities important to fertility in sandy soil. Cyfluthrin significantly increased bacterial populations after 2 wks. Imidacloprid showed an inhibitory effect on fungal numbers after 2 wks incubation while the others did not affect fungal population. No inhibitory effect was observed on nitrification of soil indigenous nitrogen. All treatments stimulated S‐oxidation after 4 wks. With the exception of cyfluthrin and imidacloprid after 2 wks, denitrification in sandy soil indicated that all treatment inhibited denitrification throughout the experiment. No inhibitory effects on biomass‐c were observed during 2‐wk periods. An inhibitory effect was observed on amylase after 1 wk while significant recovery was observed after 3 wks. With the exception of HgCl2, no effect was observed on reducing sugar formation for 2 wks with all treatments. Formazan formation resulting from dehydrogenase activity was significantly greater with tebupirimphos and Aztec for 1 wk. All treatments supressed phosphatase activity for 1 wk, while none of the treatments suppressed phosphatase activity after 2 wks. Amitraz, tebupirimphos and Aztec inhibited urease activity for 1 wk. With the exception of tebupirimphos, no treatments affected N2‐fixation in soil. Although short‐lived inhibitory effects on activities of microbes and enzymes were caused by the insecticides, the soil indigenous microbes can tolerate the chemicals used for control of soil pests.  相似文献   

11.
An experiment has been conducted under laboratory conditions to investigate the effect of phorate (an organophosphate insecticide) and carbofuran (a carbamate insecticide) at their recommended field rates (1.5 and 1.0 kga.i.ha-1, respectively) on the growth and multiplication of microorganisms as well as rate of dissipation and persistence of the insecticidal residues including their metabolites in laterite (typic orchaqualf) and alluvial (typic fluvaquent) soils of West Bengal. Application of phorate and carbofuran in general, induced growth and development of bacteria, actinomycetes, fungi, N2-fixing bacteria and phosphate solubilizing microorganisms in both the soils and the stimulation was more pronounced with phorate as compared to carbofuran. Application of phorate recorded highest stimulation of fungi in laterite and actinomycetes in alluvial soil. Carbofuran on the other hand, augmented fungi and N2-fixing bacteria in laterite and actinomycetes in alluvial soil. Bacterial population was inhibited due to the application of carbofuran in alluvial soil. Phorate sulfoxide and phorate sulfone, the two metabolites of phorate and 3-hydroxycarbofuran and 3-ketocarbofuran, the two metabolites of carbofuran isolated were less persistent in both the soils. Phorate persisted in laterite and alluvial soils up to 45 and 60 days, respectively depicting the half-life (T1/2) 9.7 and 11.5 days, respectively while the T1/2 of carbofuran for the said soils were 16.9 and 8.8 days, respectively. No metabolite of carbofuran was detected in soils after 30 days of incubation while phorate sulfone persisted in alluvial soil even after 60 days of application of the insecticide.  相似文献   

12.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

13.
Abstract

Carbofuran (2, 3‐dihydro‐2, 2‐dimethyl‐7‐benzofuranyl N‐methylcarbamate) was mixed with standing water from six flooded Azolla (a fern harboring a nitrogen fixing alga, Anabaena azollae) plots that had been regularly treated with carbofuran before. The insecticide completely disappeared in 5 to 10 days when mixed with water from three of the six plots. The enrichment culture, prepared by further additions of carbofuran to the standing water from an Azolla plot, degraded bendiocarb (2, 2‐dimethyl‐l, 3‐benzidioxol‐4‐yl‐N‐methylcarbamate), carbofuran and carbosulfan [2,3‐dihydro‐2,2‐dimethyl‐7‐benzofuranyl (di‐n‐butyl‐aoinosulfenyl) methyl‐carbamate ] in that order. Enrichment culture, upon sterilization by autoclavlng, lost its ability to degrade carbofuran. Evidently, accelerated degradation of carbofuran in standing water from retreated Azolla plots was mediated by microorganisms.  相似文献   

14.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

15.
Abstract

The loss of carbofuran was studied from rice paddy water treated with a granular formulation of the insecticide, and from ponds filled with drainage from the paddy. The average half‐life (t1/2) for carbofuran loss was 57 hr. Controlled experiments indicated that pH was the predominating factor governing carbofuran loss from water in the environment studied. The loss due to hydrolysis was over 700 times more rapid at pH 10 (t1/2 = 1.2 hr.) than at pH 7 (t1/2 = 864 hr.) in buffered deionized water. The average pH of the rice paddy was 8, but diurnal fluctuations of 7 to 9.5 are common in similar environments. Impurities in the water, sunlight, and temperature influence the rate of carbofuran loss but not nearly so much as pH. There was no evidence for significant loss due to evaporation or oxidation. The results have important implications for the duration of the insecticide's activity and the effect on fish within or downstream from treated paddies.  相似文献   

16.
Abstract

A laboratory study was conducted to determine the effect of four experimental insecticides, DOWCO429X, DPX43898, tefluthrin and trimethacarb, on enzyme activities and levels of adenosine 5'‐triphosphate (ATP) in mineral and organic soils. DOWCO429X decreased urease activity in organic soil after 7 days while a stimulatory effect was observed with most treatments after 14 days. No inhibition on acetylene (C2H2) reduction by nitrogenase was evident with any of the insecticides in either soil. With the exception of DOWCO429X and tefluthrin at 7 days in organic soil, none of the insecticide treatments inhibited dehydrogenase activity in either soil. Dehydrogenase activity, measured by formazan formation, was greater in many samples in sandy loam than the control throughout the experiment. No inhibitory effect was observed on amylase activity after 2 or 3 days in sandy soil. A stimulatory effect was apparent in many samples after 2 days in organic soil. All insecticide treatments in sandy soil reduced invertase activity at 2 days. However, none of the experimental insecticides inhibited invertase activity after 3 days. A stimulatory effect in invertase activity was apparent in most cases at 2 days in organic soil and no difference was observed after 3 days. Phosphatase activity in insecticide treated samples was equal to or greater than that of control in sandy soil after 2 h. With the exception of DPX43898, the insecticides depressed phosphatase activity in most organic soil samples. The insecticides did not affect ATP levels in either soil. Results indicated that the chemical treatments at the levels tested did not significantly affect activities of enzymes or level of ATP in both soils.  相似文献   

17.
Abstract

Pesticides are often applied in combination, but less‐often is soil persistence measured this way. The present field and laboratory study determined relative persistence of five herbicides and two insecticides, co‐applied, as a function of three soil water contents. Losses were modeled adequately by first‐order dissipation, with no significant improvement by using a two‐compartment model. The order of persistence in a silt loam, at 25% moisture, was carbofuran < cyanazine < metribuzin = alachlor < atrazine < ethoprop < metolachlor (t½ ranged from 7–91 days). Carbofuran degradation increased greatly from 12–25% soil moisture; atrazine was unaffected by 12–35%, whereas the remaining compounds showed limited increasing loss in wetter soil. Field‐based persistence was more variable, but generally similar to lab rankings.  相似文献   

18.
Abstract

In support of field data, laboratory studies were conducted on volatilization, mineralization and binding of 14C‐p,p'‐DDT in soils at Sao Paulo. Incubation of soil for 6 weeks did not result in volatilized organics or mineralization; with >95% extractable radiocarbon in the form of p,p'‐DDT. Small amounts of bound residues (1.8%) were detected in soil. These data confirm the very slow dissipation of DDT in the field which presumably relates to the acidic pH of soil (4.5–4.8).

Bound 14C‐residues in soils treated with 14C‐p,p'‐DDT at Praia Grande and Sao Paulo could be released (5–21%) by sulphuric acid treatment. The released residue had the composition: 69–90% DDT, 7–32% DDD and 0–3% DDE. Incubation of soil bound 14C‐residues with fresh inoculum for 3 months did not result in release of 14C.

Dissipation from wooden surfaces was fairly slow. After 20 weeks, 74% of the applied radioactivity could be recovered; 44% hexane‐non‐extractable.  相似文献   

19.
Singh DK  Kumar S 《Chemosphere》2008,71(3):412-418
Soil enzymes are indicators of microbial activities in soil and are often considered as an indicator of soil health and fertility. They are very sensitive to the agricultural practices, pH of the soil, nutrients, inhibitors and weather conditions. To understand the effect of an insecticide, acetamiprid (IUPAC Name: (E)-N1-[(6-chloro-3-pyridyl) methyl]-N2-cyano-N1-methyl acetamidine) on different soil enzyme activities, the experiments were conducted for three consecutive years (2003--2005) at control and cotton experimental fields of Indian Agricultural Research Institute (IARI) and natural area (ridges with forest) in Delhi. The combined results for all three years were presented here to understand the impact of acetamiprid on soil enzyme activities. Acetamiprid was applied three times in one crop season after 41, 48 and 73 days of sowing, to control the pest. Soil of treated fields was analyzed for insecticide residues immediately after first insecticide treatment and thereafter at definite period. The residues of acetamiprid in experimental soil was varied from 0.30+/-0.13 to 22.67+/-0.2 microg g(-1)d.wt. soil, during the crop period of 2003. The insecticide residues for 2004 ranged between 0.59+/-0.38 and 13.42+/-0.71 microg g(-1)d.wt. soil and for 2005 it ranged between 0.48+/-0.22 and 19.81+/-0.33 microg g(-1)d.wt. soil. An average half life of acetamiprid in our treated field was 11.2+/-1.7 days for all three years. Similarly, the soil from natural area and control were also tested for insecticide residues. No detectable insecticide residues had been found. Soil from three localities i.e. natural, control and experimental fields were tested for different enzyme activities. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities were high in natural soil in comparison to control soil and insecticide treated soil in all three experimental years. At the same time, nitrate reductase activity was all time low in acetamiprid treated soil. Acetamiprid had inhibitory effects on nitrate reductase, arginine deaminase and urease activities. After first treatment (43 days after crop sowing), nitrate reductase (41%), arginine deaminase (22%) and urease (35%) activities were declined. Dehydrogenase activity increased to 22% after first insecticide application. Enzyme activities were recovered at the end of each crop season. Therefore, it can be attributed that agricultural practices, weather conditions and use of acetamiprid might be responsible for the different level of enzyme activities in soil.  相似文献   

20.
Abstract

With the exception of EPTC, herbicide treatments showed inhibitory effects on bacterial colony counts in a sandy loam soil for the first week. Monolinuron and simazine were stimulatory to the growth of fungi in the organic soil after 2 wk. None of the herbicide treatments affected nitrification during the first week of incubation. Except the treatment of EPTC in organic soil, all herbicides inhibited nitrification after 2 wk in both soils. All herbicide treatments stimulated SO4 formation during the 8‐wk period in the sandy loam soil. Simazine and tridiphane also stimulated sulfur oxidation after 4 wk in an organic soil. With the exception of EPTC and nitrapyrin, no significant inhibitory effect on the amount of biomass‐C was observed in the organic soil. A stimulatory effect on denitrification was observed with EPTC for 2 wk and monolinuron for 1 wk in the sandy loam soil and with simazine and tridiphane after 2 wk in the organic soil. It is apparent that the indigenous soil microorganisms can tolerate the effects of the chemicals for control of soil weeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号