首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of to evaluate efficiency of this study was extraction pressurized liquid extraction (PLE) for the analysis of four pesticides, fthalide, etofenprox, fenitrothion, and isoprothiolane, in unpolished rice by comparing with homogenization as a reference technique. The concentrations of four selected pesticides obtained by PLE with acetonitrile at 130°C for 10 min × 2 cycles were comparable to those by homogenization with water-soaking. The repeatability of the analysis, represented as relative standard deviations (RSDs), were 1.4–3.6% (n = 3) for PLE at 130°C and 1.2–3.8% (n = 3) for homogenization with water-soaking. Recovery yields of surrogates were 75–88% and 87–109% for PLE at 130°C and homogenization with water-soaking, respectively, and these were satisfactory according to the method of positive list. This study suggested that PLE can be applied for the analysis of selected four pesticides in unpolished rice as well as homogenization with water-soaking.  相似文献   

2.
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73–117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified 15N-13C-labeled CPF was stable over 16 mo storage at ?20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.  相似文献   

3.
The aim of this study was to develop an analytical method for the determination of residues of organophosphorus and carbamate pesticides which are widely used in Tunisia. This method involves a liquid-liquid extraction procedure followed by liquid chromatography tandem mass spectrometry (LC/MS/MS) for the identification and quantification of compounds. Ionization of molecules was performed by the electrospray mode. Multiple reactions monitoring (MRM) was the acquisition mode used for the monitoring of two MS/MS transitions for each compound. The average recoveries obtained, at three different fortification levels, ranged between 65% and 106% for most of the pesticides studied, except for methamidophos (lower than 25%).The linearity of the method was in the range of 5 to 50 μ g/L with a correlation coefficient from 0.995 to 0.999, depending on the analyte. The estimated limit of detection and limit of quantification were 2 μ g/L and 5 μ g/L, respectively. The precision of the analytical procedure was satisfactory and the coefficients of variation, evaluated at three concentration levels were lower than 15% for most pesticides studied. The application of the method was investigated in a population of agricultural workers chronically exposed to various pesticides some of which, such as carbofuran, carbendazim, methomyl and pirimicarb, were detected in some serum samples.  相似文献   

4.
The aim of to evaluate efficiency of this study was extraction pressurized liquid extraction (PLE) for the analysis of four pesticides, fthalide, etofenprox, fenitrothion, and isoprothiolane, in unpolished rice by comparing with homogenization as a reference technique. The concentrations of four selected pesticides obtained by PLE with acetonitrile at 130 degrees C for 10 min x 2 cycles were comparable to those by homogenization with water-soaking. The repeatability of the analysis, represented as relative standard deviations (RSDs), were 1.4-3.6% (n = 3) for PLE at 130 degrees C and 1.2-3.8% (n = 3) for homogenization with water-soaking. Recovery yields of surrogates were 75-88% and 87-109% for PLE at 130 degrees C and homogenization with water-soaking, respectively, and these were satisfactory according to the method of positive list. This study suggested that PLE can be applied for the analysis of selected four pesticides in unpolished rice as well as homogenization with water-soaking.  相似文献   

5.
The purpose of this study was to develop an analytical method for the determination of organophosphorus and pyrethroid pesticides in soybean by pressurized liquid extraction (PLE). Two organic solvents, acetone and acetonitrile, were evaluated as extraction solvents. In both cases, the amount of extract was enhanced with increasing extraction temperature. The extracts obtained using acetonitrile were measured by gas chromatography/mass spectrometry after a cleanup process based on the analytical method for the Japanese Positive List System for Agricultural Chemicals Remaining in Foods. The effect of extraction temperature (range: 40– 130°C) on extraction efficiency was evaluated by a recovery study using 21 organophosphorus pesticides and 10 pyrethroid pesticides as target analytes and acetonitrile as the solvent. The results indicated that at 130°C, some organophosphorus pesticides might be degraded, whereas extraction temperatures between 70°C and 100°C were optimal. Next, a prepared sample containing fenitrothion and permethrin was analyzed. Although the sample was not soaked in water prior to analysis, PLE provided analytical results comparable to those obtained by solvent extraction with homogenization. Therefore, PLE is considered a simple and alternative technique for the extraction of organophosphorus and pyrethroid pesticides in soybean.  相似文献   

6.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   

7.
Extraction and quantification of pesticide residue from the milk matrix at or below the established maximum residue limit (MRL) is a challenging task for both analytical chemists and the regulatory institutions to take corrective actions for the human health and safety. The main aim of the study is to develop a simple rapid and less expensive QuEChERS extraction and cleanup method for simultaneous analysis of 41 multiclass pesticide residue in milk by gas chromatography-electron capture detector (GC-ECD), followed by confirmation of the residues with gas chromatography-mass spectrometer (GC-MS). Effect of sorbent type, temperature, spiking concentration, matrix effect (ME), measurement uncertainty (MU), inter- and intra-assay repeatability, reproducibility of recovery, and trueness of the results were investigated to validate the effectiveness of the method. Limit of determination (LOD) and limit of quantitation (LOQ) for all the analytes ranged within 0.001–0.02 and 0.002–0.05 µg mL?1, respectively. The % recovery of all the pesticides ranged between 91.38 and 117.56% with relative standard deviation (RSD) below 2.79%. The MU for all the analytes was ≤29% of respective LOQs, and except for few pesticides, the ME was largely negative. The method fulfilled all the SANTE guidelines and thus can be extended for routine analysis of multiclass pesticide residue in milk.  相似文献   

8.
A multiresidue method for the analysis of 86 persistent pollutants in marine sediments at ultra-trace level has been developed and validated using pressurized liquid extraction (PLE) and stir-bar sorptive extraction (SBSE) coupled with thermal desorption and gas chromatography-triple quadrupole mass spectrometry (TD-GC-MS/MS QqQ). The compounds analyzed belong to various families such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenylethers, organophosphorus and organochlorine pesticides and other pesticides such as urons, and triazines. The analytes have very different polarities and log Kow values, which is an important parameter in the optimization of a SBSE method. Due to PLE high efficiency and throughput rates, along with the proven ability for multiresidue analysis and excellent sensitivity of SBSE, we present an efficient method. The limits of quantification obtained ranged from 0.014 to 1.0 ng g−1, with detection limits below pg g−1 levels. In order to validate the proposed methodology, quality parameters such as recovery, linearity and reproducibility were studied. Recoveries ranged from 63% to 119%, reproducibility (in terms of Relative Standard Deviation for ten determinations) was lower than 35% in all cases, and determination coefficients higher than 0.990 for all analytes. The main factors that affect PLE, SBSE and GC-MS/MS procedures were optimized. The method was applied to the analysis of nine marine sediments obtained from the nine main submarine wastewater discharge points (emissaries) presents along the coast of Tenerife Island (Canary Islands, Spain).  相似文献   

9.
A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy–precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01–1.0 μg mL?1 for OCs and OPs and 0.05–2.5 μg mL?1 for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70–120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg?1, and the LOQs were determined as 0.01-0.049 mg kg?1. The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India.  相似文献   

10.
对土壤中8种有机氯农药(α-HCH、β-HCH、γ-HCH、δ-HCH、p,p’-DDE、p,p’-DDD、o,p’-DDT、p,p’-DDT)进行了分析,使用加速溶剂萃取(ASE)仪对土壤样品中的目标组分进行萃取、凝胶渗透色谱(GPC)仪对萃取液净化、双塔双柱同时进样分析,采用双电子捕获检测器(ECD)同时定性定量测定。结果表明,该方法检测效果较好,8种有机氯农药的回收率在81.3%~88.6%,相对标准偏差为3.9%~5.7%,检出限为0.18~0.37μg/kg。与传统的方法相比,该方法操作简便、重复性好,定性定量更准确。  相似文献   

11.
Abstract

A method is described for the determination of organochlorine and organophosphate pesticide residues in fruits, vegetables and sediments. The concentrated solvent extract was sealed in a polymeric membrane tube, dialysed in cyclohexane and the solvent replaced with hexane. The organophosphates were analysed on a specific thermionic detector without further clean‐up. For the organochlorine pesticides the extract was eluted through 3 g of alumina and analysed on GC/ECD. The clean‐up for sediment extract was carried out on a10 g alumina column with 100 mL hexane containing 5% acetone and the eluate was concentrated to 5 mL.

The detection limit for organophosphates on a 40 g sample and a final volume of 10 mL was on the average 0.01 mg/kg. The detection limit for organochlorine pesticides, with the final volume of 25 mL, was 0.005 mg/kg for all pesticides except for p,p'‐DDT and endosulfan sulphate, which was 0.01 mg/kg.

The detection limit for oganochlorine pesticides in sediment, with the final volume of 2 mL, was less than 1 μg/kg and for organophosphate pesticides less than 10 μg/kg when the final volume was made to 0.5 mL. At the detection limits the method produced a very high coefficient of variation for both organochlorine and organophosphate pesticides.  相似文献   

12.
A simultaneous method for quantifying eight metabolites of organophosphate pesticides and pyrethroid pesticides in urine samples has been established. The analytes were extracted using liquid–liquid extraction coupled with WCX solid phase extraction (SPE) cartridges. Eight metabolites were chemically derivatized before analysis using gas chromatography–tandem mass spectrometry (GC–MS–MS). The separation was performed on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) with temperature programming. The detection was performed under electro-spray ionization (ESI) in multiple reaction monitoring (MRM) mode. An internal standard method was used. The extraction solvent, types of SPE cartridges and eluents were optimized by comparing the sample recoveries under different conditions. The results showed that the calibration curves of the five organophosphorus pesticides metabolites were linear in the range of 0.2–200 μg/L (r2 ≥ 0.992) and that of the three pyrethroid pesticides metabolites were linear in the range of 0.025–250 μg/L (r2 ≥ 0.991). The limits of detection (LODs, S/N ≥ 3) and the limits of quantification (LOQs, S/N ≥ 10) of the eight metabolites were 0.008–0.833 μg/L and 0.25–2.5 μg/L, respectively. The recoveries of the eight metabolites ranged from 54.08% to 82.49%. This efficient, stable, and cost-effective method is adequate to handle the large number of samples required for surveying the exposure level of organophosphorus and pyrethroid pesticides in the general population.  相似文献   

13.
Abstract

This research is a case study on detection of pesticides in river water, sediment as well as fish samples from Tapi River, among the major rivers of Gujarat, India. To investigate the misuse, concentration level and occurrence patterns of persistent pesticides, samples were collected from the river. Chlorpyrifos, methyl parathion, hexachlorocyclohexane (HCH), dichloro diphenyl trichloroethane (DDT) and endosulfan were analyzed by gas chromatography technique with flame ionization detector (FID). Scanty reports are available, but after 1999, no such data are reported as some of these pesticides have been banned. Although these pesticides are still in use which we observed from the obtained results. In this river, the amount of endosulfan, chlorpyrifos, and methyl parathion was observed in surface water with concentrations of 37.56?µg/L, 0.86?µg/L and 0.43?µg/L, respectively. Endosulfan, DDT and methyl parathion detected in sediment were 38.38?ng/g, 0.65?ng/g and 0.77?ng/g, respectively. In fish samples, levels of endosulfan, chlorpyrifos, and methyl parathion detected were 101.28, 0.392, and 3.49?ng/g correspondingly. Results showed that highly toxic pesticides are still being used in the surrounding area, and there is an urgent need for enforcement of rules to control the production and application of such pesticides.  相似文献   

14.
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73-117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified (15)N-(13)C-labeled CPF was stable over 16 mo storage at -20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.  相似文献   

15.
The purpose of this study was to develop an analytical method for the determination of organophosphorus and pyrethroid pesticides in soybean by pressurized liquid extraction (PLE). Two organic solvents, acetone and acetonitrile, were evaluated as extraction solvents. In both cases, the amount of extract was enhanced with increasing extraction temperature. The extracts obtained using acetonitrile were measured by gas chromatography/mass spectrometry after a cleanup process based on the analytical method for the Japanese Positive List System for Agricultural Chemicals Remaining in Foods. The effect of extraction temperature (range: 40- 130°C) on extraction efficiency was evaluated by a recovery study using 21 organophosphorus pesticides and 10 pyrethroid pesticides as target analytes and acetonitrile as the solvent. The results indicated that at 130°C, some organophosphorus pesticides might be degraded, whereas extraction temperatures between 70°C and 100°C were optimal. Next, a prepared sample containing fenitrothion and permethrin was analyzed. Although the sample was not soaked in water prior to analysis, PLE provided analytical results comparable to those obtained by solvent extraction with homogenization. Therefore, PLE is considered a simple and alternative technique for the extraction of organophosphorus and pyrethroid pesticides in soybean.  相似文献   

16.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   

17.
Abstract

A pressurized liquid extraction (PLE) method was presented for the determination of six neonicotinoid pesticides, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam in green onion. The critical parameters of PLE, e.g. extraction solvent, temperature, pressure, number of cycles, and static extraction time, were optimized by test on the spiked green onion with six neonicotinoids and the incurred green onion applied with four commercial neonicotinoid insecticide formulations (acetamiprid, dinotefuran, imidacloprid, and thiamethoxam). As a result, the recoveries of six neonicotinoids obtained by one cycle PLE with acetonitrile at 140?°C and 50?bar for 10?min were 94.7–99.5%. These results were acceptable according to the validation guideline for testing method of agricultural chemicals in food by Ministry of Health, Labour, and Welfare in Japan. PLE was also validated by the test on the incurred green onion. The analytical values of four neonicotinoids obtained by PLE were good agreement with those obtained by solid–liquid extraction with homogenizer, which is employed for Japanese official method for the analysis of pesticide residues in food (the ratios of analytical values obtained by PLE to those obtained by solid–liquid extraction were 99.7–101.2%). These results indicate that PLE is applicable for the determination of neonicotinoids in green onion.  相似文献   

18.
This study aims to identify levels of several organochlorine and organophosphorus compounds in shrimp-raising areas of coastal El Salvador, to assess potential impacts on shrimp growth and survival that hamper the sustainability of aquaculture in the region. The paper reports the current levels of γ-HCH, 4,4'-DDT, 4,4'-DDE, 4,4'-DDD, endrin, dieldrin, heptachlor, parathion, methyl parathion, and etoprophos in soils (depth 20 cm), sediments (depth 5 cm), shrimp (Penaeus sp.), and water of three rearing ponds and also in the sediment (depth 5 cm) and water surrounding those ponds in Jiquilisco Bay. Sampling was carried out during the dry (January-March) and rainy (June-August) seasons of 2008. The presence of pesticides in the samples of water, shrimp, and sediment at shrimp ponds was not detected in either season; however, in soil samples (depth 20 cm) taken from these ponds, heptachlor, endrin, dieldrin, 4,4'-DDD, and 4,4'-DDT were identified at concentrations below the method limit of quantification (LOQ), and 4,4'-DDE was found in a concentration falling in the range from 3.85 to 19.61 ng/g. In samples of water taken at the bay water intakes to the rearing ponds, we observed dieldrin concentrations in the range between 0.085 ng/mL and 0.182 ng/mL during the dry season. In the samples of sediments taken in the surrounding areas of shrimp ponds, we found-for both seasons-that in 60 % of the samples, 4,4'-DDE was present in concentrations ranging from 3.75 ng/g to 30.97 ng/g. Additionally, in the rainy season, we observed heptachlor in sediment at concentrations below the method quantification limit. It was concluded that organochlorine compounds from pesticides are still present in Jiquilisco Bay, trapped in deep sediment, even though they have been banned since the 1980s. These were not detected in shrimp tissue, surface water, and shallow sediment in rearing ponds, and hence, we do not believe their presence has any major impact on shrimp production in sampled areas.  相似文献   

19.
ABSTRACT

This study investigated spatio-temporal variations of selected pesticide residues in the Kurose River in Higashi-Hiroshima city (Hiroshima Prefecture), Japan. Water samples were collected from the river at seven sites every month for 1 year (March 2016 to February 2017). Pesticide residues were extracted from the samples by a solid phase extraction using Sep Pack C18 cartridges. Once extracted, the samples were analyzed for cyanazine, simetryn, fenarimol, isoprothiolane, and diazinon using a reversed-phase high-performance liquid chromatography ultraviolet visible (HPLC-UV Vis) system. The limits of detection were 3.60, 4.10, 2.80, 6.50, and 7.30 ng L-1 for cyanazine, simetryn, fenarimol, isoprothiolane, and diazinon, respectively. Good recovery rates (88%–102%), and mean percent relative standard deviation range (1.00%–5.70%) (n = 6) were obtained with a spiking at 0.20 µg L-1. The maximum concentrations of 282, 391, 60, 1086, and 1194 ng L-1 were obtained for cyanazine, simetryn, isoprothiolane, fenarimol, and diazinon, respectively. Cyanazine was the most frequently detected pesticide (64% of the samples, n = 84), followed by simetryn (58%), and then diazinon (57%). The highest and lowest pesticide concentrations were measured during the periods May–June, and January–February, respectively. Principal component analysis revealed three principal components in which the pesticides were linked to dissolved organic matter and total suspended solids. The major water quality parameters (electrical conductivity, pH, Na+, K+, Mg2+, Ca2+, NH4+, NO3?, Cl?, SO42?, NO2?, and temperature) showed no clear trends for these pesticides. The presence of simetryn and isoprothiolane was largely attributed to rice paddy farms, whereas diazinon was associated mostly with vegetable farms and orchards. The diazinon and isoprothiolane patterns were consistent with their use of controlling insects and fungi in the prefecture. The maximum diazinon concentration detected was higher than the human safe level specified by the European Union (100 ng L-1) in Council Directive 98/83/EC. This is of concern because of the bioconcentration potential of these residues in fish and other marine animals consumed by humans.  相似文献   

20.
A novel and simple analytical procedure using cold activated carbon fiber-solid phase microextraction (CACF-SPME) was applied to determine organochlorine pesticides (OCs) in soil samples. The pesticides in this study consist of α -, β -, γ -, and δ -hexachlorocyclohexane (HCH). By heating the sample while cooling the fiber, the developed method not only provides better performance in terms of sensitivity, linearity and recovery but also offers shorter adsorption procedure than that of traditional headspace-solid phase microextraction (HS-SPME). The experimental conditions such as the amount of water, adsorption time and adsorption temperature were optimized. Matrix effects were investigated with different types of soils. We concluded that using the standard addition method was required for quantification purposes. The limits of detection obtained using the proposed method range from 0.01 to 0.05 ng/g, and the recoveries for CACF-SPME are in the range of 80.01% to 89.68% with relative standard deviation (RSDs) better than 8.60%. The proposed method was further applied to determine OCs in real agricultural soil. The results are in good agreement with those obtained using traditional ultrasonic extraction. The research demonstrates the suitability of the CACF-SPME for the analysis of OCs in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号