首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Previous studies have demonstrated that pesticides could induce cytotoxicity and genotoxicity in vivo and in vitro, and that oxidative stress may be an important factor involved. However, investigations comparing the capability of different organophosphorous (OP) compounds to induce cytotoxicity, genotoxicity and oxidative stress are limited. Hence, the aim of this paper was to access the cytotoxic and genotoxic effects of five OPs or metabolites, Acephate (ACE), Methamidophos (MET), Chloramidophos (CHL), Malathion (MAT) and Malaoxon (MAO), and to clarify the role of oxidative stress, using PC12 cells. The results demonstrated that MET, MAT and MAO caused significant inhibition of cell viability and increased DNA damage in PC12 cells at 40 mg L(-1). MAO was more toxic than the other OPs. ACE, MET, MAT and MAO increased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) at 20 mg L(-1) and 40 mg L(-1) to different degrees. Pre-treatment with vitamin E(600 μM)caused a significant attenuation in the cytotoxic and genotoxic effect; pre-treatment reversed subsequent OP-induced elevation of peroxidation products and the decline of anti-oxidant enzyme activities. These results indicate that oxidative damage is likely to be an initiating event that contributes to the OP-induced cytotoxicity.  相似文献   

2.

Purpose

Ciprofloxacin (CIP), a broad-spectrum, second-generation fluoroquinolone, has frequently been found in hospital wastewaters and effluents of sewage treatment plants. CIP is scarcely biodegradable, has toxic effects on microorganisms and is photosensitive. The aim of this study was to assess the genotoxic potential of CIP in human HepG2 liver cells during photolysis.

Methods

Photolysis of CIP was performed in aqueous solution by irradiation with an Hg lamp, and transformation products were monitored by HPLC-MS/MS and by the determination of dissolved organic carbon (DOC). The cytotoxicity and genotoxicity of CIP and of the irradiated samples were determined after 24?h of exposure using the WST-1 assay and the in vitro micronucleus (MN) test in HepG2 cells.

Results

The concentration of CIP decreased during photolysis, whereas the content of DOC remained unchanged. CIP and its transformation products were not cytotoxic towards HepG2 cells. A concentration-dependent increase of MN frequencies was observed for the parent compound CIP (lowest observed effect level, 1.2???mol?L?1). Furthermore, CIP and the irradiated samples were found to be genotoxic with a significant increase relative to the parent compound after 32?min (P?P?Conclusions Photolytic decomposition of aqueous CIP leads to genotoxic transformation products. This proves that irradiated samples of CIP are able to exert heritable genotoxic effects on human liver cells in vitro. Therefore, photolysis as a technique for wastewater treatment needs to be evaluated in detail in further studies, not only for CIP but in general.  相似文献   

3.
The purpose of this study was to investigate the apoptosis-related cytotoxic effects and molecular mechanisms of individual isomers of profenofos (PFF) on primary hippocampal neurons at 1.0 to 20 mg L?1. The cell viability and lactate dehydrogenase (LDH) efflux indicated that (?)­PFF exposure was associated with more toxic effects than (+)­PFF above the concentration of 5 mg L?1 (P < 0.5). Flow cytometric results showed that the percentages of apoptotic cells incubated with 20 mg L?1 (?)­PFF, (+)­PFF and rac-PFF for 24 h reached 23.4%, 9.2% and 14.2% (P < 0.01), respectively. Hippocampal neurons incubated with (?)­PFF, (+)­PFF and rac-PFF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and a dose-dependent inhibition of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, implying that the defense system of the tests induces oxidative damage. A statistically significant difference was observed between the two enantiomers at 5 mg L?1 and above. Moreover, the results showed that (?)­PFF exposure caused a significant loss in mitochondrial transmembrane potential (MMP), an upregulation of Ca2+ and Bax protein expression, a downregulation of Bcl-2 protein expression, and the activation of caspase-3 and caspase-9 in a dose-dependent manner; (+)­PFF and rac-PFF exhibited these effects to a lesser degree. All results suggest that PFF induced apoptosis in rat hippocampal neurons via the mitochondria-mediated pathway, and oxidative stress is one of the factors of PFF-induced apoptosis. In addition, (?)­PFF appears to play an important role in oxidative stress and apoptosis, indicating that enantioselectivity should be considered when assessing ecotoxicological effects and health risks of chiral pesticides.  相似文献   

4.
Arthrobacter sp. Y1, capable of metabolizing p-nitrophenol (PNP) as the sole carbon, nitrogen and energy source was isolated from activated sludge. The bacterium could tolerate concentrations of PNP up to 600 mg L? 1, and degradation of PNP was achieved within 120 h of incubation. PNP and its metabolites were analyzed by high performance liquid chromatography (HPLC). The metabolite formed indicated that the organism followed the 4-nitrocathechol (4-NC) pathway for metabolism of this compound. The relevant degrading-enzyme was extracellular. Addition of other carbon source (glucose 0~ 30 g L? 1) led to accelerated degradation. If the glucose concentration exceeded 30 g L? 1, however, degradation was repressed. Spectrophotometry assay of the nitrite and genotoxic study showed that strain Y1 could detoxify PNP. Therefore, the present study may provide a basis for the development of the bioremediation strategies to remedy the pollutants in the environment.  相似文献   

5.
The genotoxic effects of oxidative metabolites of trichloroethylene (TCE), namely chloral hydrate, trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol (TCEOH) were examined in human peripheral blood lymphocytes. In this context, lymphocytes were exposed in vitro to 25, 50, and 100 μg/ml concentrations of these metabolites separately for a period of 48 h and examined for micronucleus (MN) induction through flow cytometer. At 50 μg/ml TCE metabolites, TCA (6.33?±?0.56 %), DCA (5.06?±?0.55), and TCEOH (4.70?±?1.73) induced highly significant (p?<?0.001) frequency of MN in comparison to control (1.03?±?0.40) suggestive of their genotoxic potential. However, exposure of 100 μg/ml of all the metabolites consistently declined the frequencies of MN which in some cases was equable to that of observed at 25 μg/ml. Further, cytotoxicity and cell cycle disturbances were also measured to find out the association of these endpoints with the MN induction. DNA content analysis revealed 3–4-fold elevation of S-phase at all the concentrations tested. Particularly, at 100 μg/ml, treatment elevation of S-phase was significantly (p?<?0.0001) higher as compared to the control. Present findings together with earlier reports indicate that TCE induces genotoxicity through its metabolites. Interaction of these metabolites with DNA, as evident by elevated S-phase, seems to be the major cause of MN induction. However, involvement of spindle disruption cannot be ruled out. This comparative study also suggests that after TCE exposure, the metabolic efficiency of human to generate oxidative metabolites determines the extent of genotoxicity.  相似文献   

6.
To understand the mechanism underlying organophosphate pesticide toxicity, cyanobacterium Anabaena PCC 7120 was subjected to varied concentrations (0, 5, 10, 20 and 30 mg L?1) of profenofos and the effects were investigated in terms of changes in cellular physiology, genomic template stability and protein expression pattern. The supplementation of profenofos reduced the growth, total pigment content and photosynthetic efficiency of the test organism in a dose dependent manner with maximum toxic effect at 30 mg L?1. The high fluorescence intensity of 2′, 7′ –dichlorofluorescin diacetate and increased production of malondialdehyde confirmed the prevalence of acute oxidative stress condition inside the cells of the cyanobacterium. Rapid amplified polymorphic DNA (RAPD) fingerprinting and SDS-PAGE analyses showed a significant alteration in the banding patterns of DNA and proteins respectively. A marked increase in superoxide dismutase, catalase, peroxidase activity and a concomitant reduction in glutathione content indicated their possible role in supporting the growth of Anabaena 7120 up to 20 mg L?1. These findings suggest that the uncontrolled use of profenofos in the agricultural fields may not only lead to the destruction of the cyanobacterial population, but it would also disturb the nutrient dynamics and energy flow.  相似文献   

7.
The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L−1; 220 ng L−1; and 10 μg L−1).Cocaine caused significant (p < 0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects.  相似文献   

8.
In this study we evaluated genotoxicity and cytotoxicity of native samples of wastewaters (15 samples), surface waters (28 samples) and potable waters (8 samples) with the SOS/umuC assay with Salmonella typhimurium TA1535/pSK1002 and MTT assay with human hepatoma HepG2 cells. The genotoxicity of selected samples was confirmed with the comet assay with HepG2 cells. In the SOS/umuC assay 13 out of the 51 samples were genotoxic: two effluent samples from chemical industry; one sample of wastewater treatment plant effluent; two hospital wastewater samples; three river water samples and four lake water samples. Six samples were cytotoxic for HepG2 cells: both effluent samples of chemical industry, two wastewater treatment plant effluent samples, and two river water samples, however, only the chemical industry effluent samples were genotoxic and cytotoxic, indicating that different contaminants are responsible for genotoxic and toxic effects. Comparing genotoxicity of river and lake water samples with the chemical analytical data of the presence of the residues of pharmaceutical and personal care products (non-steroidal anti-inflammatory drugs, UV filters and disinfectants) in these samples, indicated that the presence of UV filters might be linked to the genotoxicity of these samples. The results showed that the application of the bacterial SOS/umuC assay and mammalian cell assays (MTT and comet assay) with HepG2 cells was suitably sensitive combination of assays to monitor genotoxicity and cytotoxicity of native samples of wastewaters and surface waters. With this study we also confirmed that the toxicity/genotoxicity bioassays should be an integral tool in the evaluation of toxicity of complex wastewaters before the release into environment, as well as for the monitoring of surface water quality, providing data useful in risk assessment.  相似文献   

9.
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40?°C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033?U mg?1, 12.2?mmol L?1, 3.3?×?106 s?1, and 2.7?×?108 s?1mol?1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1?h. After treatment of the OP for 8?h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.  相似文献   

10.
This study was designed to assess the effects of long term, high metal exposition (cadmium, lead, copper, nickel and zinc) on DNA damage in four plant model systems [Taraxacum officinale (Asteraceae), Matricaria recutita L. (Asteraceae), Robinia pseudoacacia L. (Fabaceae), and Urtica dioica (Urticaceae)]. DNA stability was investigated by a Random Amplified Polymorphic DNA (RAPD) technique. Agarose-gel electrophoresis revealed total of 37 bands with different molecular weights ranging from 1250 to 5000 bp. It generated distinctive polymorphism value of 72.97% (27 bands) total in four plant species investigated. The dendrogram constructed using NTSYSpc programme showed that there is grouping in separate clusters of the same plant model collected from two different areas (metal-exposed and control samples). The study concluded that the long term metal-exposing periods had genotoxic stress on macromolecules of plant model systems investigated and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of plants to metal stressors.  相似文献   

11.
A dominant strain named Ochrobactrum sp. was isolated from soils contaminated with coal tar. The batch experiments were carried out to study the co-metabolic degradation of pyrene by Ochrobactrum MB-2 with naphthalene as the main substrate and the effects of several significant parameters such as naphthalene concentration, pH and temperature on removal efficiency were explored. The results showed that Ochrobactrum MB-2 effectively degraded naphthalene and that the addition of naphthalene favored the degradation of pyrene. The maximum elimination efficiency of naphthalene (10?mg?L?1) and pyrene (1?mg?L?1) was achieved at pH 7 and 25?°C, and the corresponding values were 99 and 41%, respectively. A competitive inhibition model based on the Michaelis–Menten equation was used to characterize the inhibitory effect of pyrene on naphthalene degradation. The values of the half-saturation coefficient for naphthalene (KS) and dissociation constant of enzyme-inhibitor complex (KC) were determined to be 4.93 and 1.38?mg?L?1, respectively.  相似文献   

12.
This study aimed to evaluate the aquatic toxicity of three typical tetracycline antibiotics, including tetracycline, oxytetracycline, and chlortetracycline, on the cyanobacterium Microcystis aeruginosa. The cell density, chlorophyll a content, protein content, and enzymatic antioxidant activities were determined. The results showed that the cell growth was significantly inhibited by the three compounds at a low concentration. The chlorophyll a and protein content decreased significantly after exposure to 0.05 mg L?1 of each compound for 9 d. When exposed to 0.2–1 mg L?1 of tetracycline, the superoxide dismutase (SOD) activity increased, but peroxidase (POD) and catalase (CAT) activities decreased. In contrast, when exposed to oxytetracycline and chlortetracycline at different concentrations ranging from 0.2 to 1 mg L?1 and from 0.01 to 0.05 mg L?1, the SOD activity decreased, but the POD and CAT activities increased. These findings indicate that tetracycline antibiotics influence cell growth and protein synthesis, and they also induce oxidative stress in M. aeruginosa at environmentally similar concentrations. Thus, this study may provide further insights into the toxic effects of tetracycline antibiotics and the controlled use of antibiotics.  相似文献   

13.

Background, aim, and scope

Assessment of environmental impacts from pesticide utilization should include genotoxicity studies, where the possible effects of mutagenic/genotoxic substances on individuals are assessed. In this study, the genotoxicity profile of the new formicide Macex® was evaluated with two genotoxicity tests, namely, the micronucleus test with mouse bone marrow and Vicia faba, and a mutagenicity test using the Ames Salmonella assay.

Materials and methods

The bacterial reverse mutation test (Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1535), the Vicia root tip and mouse micronucleus tests were conducted according to published protocols.

Results

In the range of the formicide Macex® concentrations tested from 0.06 to 1.0 g?L?1 (or mgkg?1 in the mouse test), no genotoxicity was observed in the prokaryotic or eukaryotic test organisms. However, at Macex® concentrations of 0.5 g?L?1 and above a significant decrease in the mitotic index (P?≤?0.05) in the V. faba was observed. Micronucleus formation was likewise increased in the test organism at concentrations starting at 2.0 g?L?1.

Conclusions

These data allow us to classify this natural formicide preparation as a product with no geno-environmental-impact when applied at recommended concentrations.
  相似文献   

14.
Abstract

The aim of the research was to evaluate the effect of consumption of selenium-enriched pork on selected health indicators of probands. The intake of feed mixture with increased organic selenium at the dose of 0.3?mg.kg?1 probably increases selenium concentration in MSM (musculus semimembranosus). In the pork enriched with organic selenium, the concentration was higher by 1.045?±?0.10?mg.kg?1 compared with the control group 0.701?±?0.05?mg.kg?1 at significance P?<?0.001. Sixteen participants in the experiment were represented by 8 men at the average age of 41.5?±?11.9?years and 8 women at the average age of 41.4?±?7.9?years. All the probands consumed meat enriched with selenium three times a week during one month. By consumption of the enriched pork, there was an increase of the selenium concentration in blood serum of probands traced with selenium increase from 73.19?±?15.68?μg.L?1 to 73.73?±?15.13?μg.L?1 (P?>?0.05). From the results we can see that consumption of enriched pork with selenium was significantly manifested in lowering of total cholesterol levels, which was associated with LDL cholesterol lowering (P?<?0.05). Differences among the HDL cholesterol and triglycerides samples were not significant.  相似文献   

15.
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L?1) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L?1) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L?1) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L?1) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.  相似文献   

16.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

17.
The aims of this research were to evaluate the efficacy of copper oxychloride (CuCl2.3Cu(OH)2), copper hydroxide (Cu(OH)2) and diquat (1.1′-ethylene-2.2′-bipyridyldiylium dibromide), isolated and in association with 0.1% of both copper sources, in the control of the unicellular algae Ankistrodesmus gracilis and the filamentous algae Pithophora kewesis, and to determine the acute toxicity of the tested chemicals in Hyphressobrycon eques, Pomacea canaliculata, Lemna minor and Azolla caroliniana. The efficacy was estimated by the methods of chlorophyll a and pheophytin a readings, changed into growth inhibition percentage. Both algae were exposed to the following concentrations: 0.2; 0.4; 0.8; 1.2 mg L?1 of diquat and its association with the copper sources; and 0.1; 0.3; 0.5; 0.7; 1.0 and 1.5 mg L?1 in the isolated applications of copper hydroxide and copper oxychloride. An untreated control was kept. The acute toxicity was estimatedby 50% lethal concentration (LC50). The copper sources were effective for A. gracilis control, at rates as high as 0.1 mg L?1 (>95% efficacy). Isolated diquat and its association with copper hydroxide were both effective at rates as high as 0.4 mg L?1, with 95 and 88% control efficacy, respectively. The copper oxychloride was effective at 0.2 mg L?1, with 93% efficacy. None of the tested chemicals and associations was effective on P. kewesis control. The most sensitive non target organism to the tested chemicals was L. minor; the less sensitive was H. eques.  相似文献   

18.
The fungicide tolylfluanid (N - dichlorofluoromethylthio-N′, N - dimethyl - N - p - tolylsulfamide), was investigated by cytokinesis-block micronucleus assay. Tolylfluanid at the lowest concentration (1 × 10? 6mol L? 1)did not influence significantly the frequency of micronuclei in sheep lymphocyte cultures in comparison with control (32.33 ± 3.51/1000 binucleated cells versus 30.33 ± 2.82/1000 binucleated cells in dimethylsulfoxide (DMSO) control, P = 0.44). Higher tolylfluanid concentrations (1 × 10? 4 and, 1 × 10? 5 mol L? 1) resulted in a significant dose-dependent increase in the number of micronuclei in comparison with control (74.00 ± 13.00/1000 binucleated cells and 52.67 ± 10.12/1000 binucleated cells versus 30.33 ± 2. 82/1000 binucleated cells in DMSO control, P = 0.005 and 0.02, respectively, ANOVA followed by Tukey test P < 0.05). Many of the treated cells also possessed multiple micronuclei. Tolylfluanid did not affect the nuclear division index at all treatment concentrations. Our in vitro results thus demonstrate that tolylfluanid had a significant genotoxic effect at only the highest concentration tested.  相似文献   

19.
This study assesses the growth of the microalgae Nannochloris oculata in the presence of lindane and the ability of N. oculata to remove lindane from media. Algal biomass increased with 0.1 and 0.5 mg L?1 of lindane, and lindane concentrations in the media decreased. N. oculata removed 73% and 68.2% of lindane in the 0.1 and 0.5 mg L?1 media concentrations, respectively. Algal biomass decreased to the level of the control at lindane concentrations greater than 2.5 mg L?1, probably due to toxicity. N. oculata removed lindane from the media at concentrations lower than 1.0 mg L?1. Thus, N. oculata may be useful for lindane bioremediation in contaminated aquatic systems.  相似文献   

20.
The present study was designed to reveal whether long-term consumption of bitter apricot seeds causes changes in lipid profile and other risk factors for cardiovascular diseases. The study group consisted of 12 healthy adult volunteers (5 females and 7 males). The average age of women was 41.60 ± 11.28 years and the average age of men was 36.71 ± 13.70 years. Volunteers consumed 60 mg kg?1 of body weight of bitter apricot seeds divided into 8–12 doses daily for 12 weeks. Volunteers were recruited from the general population of Slovak Republic. After 12 weeks, mean body weight of the participants increased from 77.34 to 78.22 kg (P > 0.05). The average total cholesterol levels decreased from 4.86 mmol L?1 at the beginning of the study to 4.44 mmol L?1 at the end of the study (P < 0.05). We did not observe any significant increase in high-density cholesterol (from 1.55 to 1.60 mmol L?1). The average low-density cholesterol levels decreased from 2.93 mmol L?1 at the beginning of the study to 2.31 mmol L?1 at the end of the study (P < 0.001). Concentration of triglycerides increased significantly over the 12-week intervention period from 0.84 to 1.17 mmol L?1. After the intervention, the high-sensitivity C-reactive protein level decreased from 1.92 to 1.23 mg L?1, but results were non-significant (P > 0.05). Creatine kinase serum levels increased from 2.31 to 2.77 mg L?1 (P > 0.05) over the 12-week intervention period. The results suggest that regular intake of bitter apricot seeds may be considered potentially useful for prevention of cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号