首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.  相似文献   

2.
The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone.  相似文献   

3.
The use of organic amendments has been suggested as a method of controlling pesticide leaching through soils. The enarenados soils of the intensive horticulture of the Almeria province of southern Spain contain buried organic matter horizons above a soil layer amended with clay. This region is ideal for understanding the potential for and limitations of organic amendments in preventing pesticide pollution. This study measured the sorption and degradation potential of carbofuran in this soil system and the hydrological behaviour of the soil horizons. The sorption of carbofuran was controlled by the organic carbon content, the degradation was strongly pH-dependent and the acidic organic layer protected the sorbed carbofuran against degradation. Hydrologically, the soil system is dominated by ponding above an amended clay layer and by the presence of macropores that can transport water through this clay. A simple model is proposed on this basis and shows that although high levels of dissolved organic carbon can be released by buried organic horizons, the major control on re-release of sorbed pesticide is the potential for sorption hysteresis in this organic layer. A comparison of sorption and degradation data for carbamate insecticides used in the region with groundwater observations for these compounds shows that no amount of incorporated organic would protect against pollution from highly water-soluble compounds.  相似文献   

4.
The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching.  相似文献   

5.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT(50) values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

6.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT50 values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

7.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

8.
Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the watershed scale, surface water contamination by hexazinone could occur via the horizontal subsurface flow in upper centimeters of soil. In contrast, the surface water contamination with glyphosate by this mechanism appears unlikely.  相似文献   

9.
Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.  相似文献   

10.
Landry D  Dousset S  Andreux F 《Chemosphere》2006,62(10):1736-1747
Field studies monitoring herbicide pollution in the vineyards of Burgundy (France) have revealed that drinking water reservoirs are contaminated with several pre-emergence herbicides. An assessment of the leaching of two such herbicides, diuron and oryzalin, was therefore performed using lysimeters, under outdoor conditions, from May 2001 to May 2002. Four vineyard soils from Vosne-Romanée (Burgundy) were chosen along a topolithosequence: a rendosol and three calcosols. After 673 mm of rainfall, greater amounts of diuron than oryzalin were measured in percolates: respectively 0.10-0.84% and 0.02-0.43% of applied herbicide, depending on soils. Measurements for diuron metabolites detected greater amounts of DCPMU than DCPU in the percolates: respectively 0.05-0.13% and 0-0.04% of the applied diuron. At the end of the monitoring period, more residues of diuron than oryzalin were recovered in the soil profiles: respectively 4.6-9% and 1.4-4.4%. The oryzalin residues were found mainly in the upper 10 cm of soil columns, whereas diuron residues were present in the whole core. The mobility of both oryzalin and diuron seems fairly well-related to soil organic carbon content; the mobility of diuron is also related to soil texture (sand and coarse material contents). Under such experimental conditions, this study confirms that diuron leaching, and therefore potential groundwater contamination, is greater than that of oryzalin.  相似文献   

11.
The objective was to estimate leaching of the fungicide azoxystrobin (methyl (αE)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene)benzene-acetate) and one of its primary degradation products R234886 ([(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4-yloxyl]-phenyl-3-methoxyacrylic acid], major fraction) at four agricultural research fields (one sandy and three loamy) in Denmark. Water was sampled from tile drains, suction cups and groundwater wells for a minimum period of two years after application of azoxystrobin. Neither azoxystrobin nor R234886 were detected at the sandy site, but did leach through loamy soils. While azoxystrobin was generally only detected during the first couple of months following application, R234886 leached for a longer period of time and at higher concentrations (up to 2.1 μg L−1). Azoxystrobin is classified as very toxic to aquatic organisms and R234886 as very harmful. Our study shows that azoxystrobin and R234886 can leach through loamy soils for a long period of time following application of the pesticide and thereby pose a potential threat to vulnerable aquatic environments and drinking water resources. We thus recommend the inclusion of azoxystrobin and R234886 in pesticide monitoring programmes and further investigation of their long-term ecotoxicological effects.  相似文献   

12.
The effect of a city refuse compost (CRC) and of an anionic surfactant (sodium dodecyl sulphate (SDS) on the leaching of diazinon (0,0-diethyl 0-2-isopropyl-6-methylpyrimidin-4-yl-phosphorothioate) in the soil was studied using packed soil columns. Breakthrough curves showed the existence of various regimes of pesticide adsorption related to the pesticide and organic material nature and the soil properties. Leaching rate and mass transfer of diazinon decrease following the addition of CRC to the soil and increase after the addition of SDS. The degree of increase or decrease was found to depend strongly on the amendment dose added, especially in the case of SDS. The results afford basic data on which to base the possible use of the organic amendments studied in physicochemical methods designed to prevent the pollution of water by hydrophobic pesticides (immobilization) or to restore soils contaminated by these compounds (leaching).  相似文献   

13.
Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   

14.

Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.  相似文献   

15.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

16.
Abstract

Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of “rainfall”; reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   

17.
Diuron mobility through vineyard soils contaminated with copper   总被引:1,自引:0,他引:1  
The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.  相似文献   

18.
Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide.  相似文献   

19.
Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron > isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.  相似文献   

20.
Addition of organic wastes to agricultural soils is becoming a common practice as a disposal strategy and to improve the physical and chemical soil properties. However, in order to optimise the use of organic wastes as soil amendments, their effect on the behaviour of other compounds that are also used in agriculture, such as pesticides, needs to be assessed. In this work, we have investigated the effects of the addition of the final solid residue of the new technology of olive-oil extraction (extracted alperujo or solid olive-mill waste, SOMW2) on the sorption, degradation and leaching of the herbicide simazine in a sandy loam soil. The results are compared with those of a previous study, where the intermediary by-product of the olive-oil processing technology (unextracted alperujo or SOMW1) was applied to the same soil. The soil was amended in the laboratory with SOMW2 at two different rates (5% and 10% w/w). Simazine sorption isotherms showed a great increase in herbicide sorption after SOMW2 addition to soil. SOMW2 addition also increased sorption irreversibility. Incubation studies revealed reduced biodegradation of simazine in the soil amended with SOMW2 compared to the unamended soil. Breakthrough curves of simazine in handpacked soil columns showed that SOMW2 addition retarded the vertical movement of the herbicide through the soil and greatly reduced the amount of herbicide available for leaching. Interestingly, the results were quantitatively different from those obtained for the intermediary by-product SOMW1, illustrating the importance of the specific characteristics of the organic amendment in determining its effect on pesticide behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号