首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

2.
Use of fipronil {5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile CAS 120068–37-3} topical pet products on dogs and cats introduces low level residues into residences. Distribution and fate studies of fipronil on pets and in residences were performed to evaluate potential determinants of human exposure. Fipronil, desulfinyl fipronil, fipronil sulfone and fipronil sulfide were measured on hair clippings and brushed hair. The derivatives usually represented <10% of fipronil applied. Cotton gloves worn over impervious nitrile gloves, cotton cloths placed indoors in locations frequented by pets, and cotton socks worn by residents as direct dosimeters collected fipronil and its derivatives listed above in low amounts during 4-week study periods. Subsequent acid hydrolysis urine biomonitoring did not reveal significant excretion of biomarkers at ppb levels. The human exposure potential of fipronil is low relative to levels of health concern.  相似文献   

3.
The red calcareous earth soils of the South Australian Riverland produce more than one-third of the grapes used in Australian winemaking. As part of on-going investigations into pesticide transport in Australian vineyard soils, the movement of the fungicides dithianon and vinclozolin through such strongly alkaline soils was investigated. Small, undisturbed soil cores were extracted from the inter-row topsoil of a vineyard adjacent to the River Murray, approximately 10 km S.W. of Overland Corner, South Australia. The vines were grown in a deep (1 – 4 m) reddish brown, strongly alkaline, sandy loam with a low organic carbon content (1 – 2 %). Surface fluxes of pesticide were applied at the maximum recommended application rates to the surface of the cores, which were then irrigated, and pesticide residues in the leachate determined by HPLC. No leaching of either dithianon or vinclozolin occurred. Dithianon was immobilised in the top 2 cm of the soil. Dithianon concentrations were low ( 0 – 37 % applied dose) suggesting that rapid degradation of this compound occurs in these soils (63 – 100 % degradation in 10 days). Extremely low concentrations of vinclozolin were found throughout the soil core profiles (0.05 – 1.4 % applied dose) suggesting that this fungicide was somewhat mobile, but also that it too was unstable in such alkaline soils (> 98 % degradation in 10 days). These results suggest that the irrigated vineyard soils of this region are unlikely to be prone to leaching of dithianon or vinclozolin, and therefore that groundwater supplies in this area are unlikely to be at any significant risk of contamination through viticultural use of these compounds.  相似文献   

4.
Sorption of fipronil and its metabolites on soils from South Australia   总被引:1,自引:0,他引:1  
This paper reports on the sorption of fipronil [(+/-)-5-amino-1-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)-4-trifluoromethyl-sulfinylpyrazole-3-carbonitrile] and its two main metabolites, desulfynil and sulfide derivatives on a range of soils from South Australia. The Freundlich sorption coefficient (Kf) values for fipronil on the soils ranged from 1.94 to 4.84 using a 5% acetonitrile/water mixture as the soil solution. Its two metabolites had a higher sorption affinity for soils, with Kf values ranging from 11.09 to 23.49 for the sulfide derivative and from 4.70 to 11.77 for the desulfynil derivative. Their sorption coefficients were found to be better related to the soil organic carbon than clay content. The presence of cosolvents in soil solutions had a significant influence on the sorption of fipronil. The Freundlich sorption coefficients showed a log linear relationship with the fractions of both acetonitrile and methanol in solutions. The sorption coefficient of fipronil on Turretfield soil in the aqueous solution was estimated to be from 13.80 to 19.19. Methanol had less effect on the sorption of fipronil than acetonitrile. The Kd values for fipronil on the eight soils using a 5% methanol/water mixture were from 5.34 to 13.85, which reflect more closely the sorption in the aqueous solution. The average Koc value for fipronil on the eight South Australian soils was calculated to be 825+/-214.  相似文献   

5.
Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.  相似文献   

6.
Use of fipronil {5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile CAS 120068-37-3} topical pet products on dogs and cats introduces low level residues into residences. Distribution and fate studies of fipronil on pets and in residences were performed to evaluate potential determinants of human exposure. Fipronil, desulfinyl fipronil, fipronil sulfone and fipronil sulfide were measured on hair clippings and brushed hair. The derivatives usually represented <10% of fipronil applied. Cotton gloves worn over impervious nitrile gloves, cotton cloths placed indoors in locations frequented by pets, and cotton socks worn by residents as direct dosimeters collected fipronil and its derivatives listed above in low amounts during 4-week study periods. Subsequent acid hydrolysis urine biomonitoring did not reveal significant excretion of biomarkers at ppb levels. The human exposure potential of fipronil is low relative to levels of health concern.  相似文献   

7.
Ozone treatment of soil contaminated with aniline and trifluralin   总被引:1,自引:0,他引:1  
Column studies were conducted to determine the ability of ozone to degrade aniline and trifluralin in soil. Ozone rapidly degraded aniline from soil under moist soil conditions, 5% (wt). Removal of 77-98% of [UL-14C]-aniline was observed from soil columns (15 ml, i.d. = 2.5 cm), exposed to 0.6% O(3) (wt) at 200 ml/min after 4 min. Initial ozonation products included nitrosobenzene and nitrobenzene, while further oxidation led to CO(2). Ring-labeled-[UL-14C]-trifluralin removal rates were slower, requiring 30 min to achieve removals of 70-97%. Oxidation and cleavage of the N-propyl groups of trifluralin was observed, affording 2,6-dinitro-4-(trifluoromethyl)-aniline, 2,6-dinitro-N-propyl-4-(trifluoromethyl)-benzamine, and 2,6-dinitro-N-propyl-N-acetonyl-4-(trifluoromethyl)-benzamine. Base solutions revealed that trifluralin was similarly oxidized to CO(2), where 72-83% of the activity recovered comprised 14CO(2). Use of ozone-rich water improved contaminant removal in trifluralin-amended soil columns, but did not improve removal in aniline, pentachloroaniline, hexachlorobenzene amended soil columns, suggesting that ozonated water may improve contaminant removal for reactive contaminants of low solubility.  相似文献   

8.
Seed-coating with the insecticide fipronil has been intensively used in sunflower cultivation to control soil pests such as wireworms. A research project was undertaken to determine the soil distribution of fipronil and of its main phenylpyrazole metabolites. Under agronomic conditions, the quantity of fipronil in the seed-coat (437 microg/seed) decreased continuously during the cultivation period (3.9 microg day(-1) during the first two months; 0.3 microg day(-1) during the next four months). At the end of the cultivation period, 42% of all phenylpyrazole compounds remained in the seed-coat. Fipro nil was poorly mobile in soil, and at the end of the cultivation period it was mostly concentrated in the soil layer close to the seed (3240 microg kg(-1) soil). Starting from the seed-coating, a fipronil concentration gradient was measured in the soil, up to a distance of 11 cm from the seed. Degradation in the soil occurred at a moderate rate, probably due to the fact that water solubilization of the solid active ingredient present in the seed coating was rate limiting. Indeed, after 6 months of cultivation, only 51% of the fipronil seed-coating was found in the soil, about 7% having been absorbed by the sunflower plant, and 42% remaining in the seed coat. The predominant metabolites produced in the soil were sulfone-fipronil, sulfide-fipronil and amide-fipronil, which were produced at average rates of 5 microg kg(-1) soil day(-1), 3 microg kg(-1) soil day(-1), and 0.4 microg kg(-1) soil day(-1), respectively. In contrast, the photoproduct, desulfinyl-fipronil, was barely detected. All phenylpyrazole compounds were poorly mobile, except for the amide derivative, which is devoid of insecticidal activity in marked contrast to the other metabolites. Furthermore, detectable soil contamination was limited to a zone of about 11 cm around the seed.  相似文献   

9.
Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the watershed scale, surface water contamination by hexazinone could occur via the horizontal subsurface flow in upper centimeters of soil. In contrast, the surface water contamination with glyphosate by this mechanism appears unlikely.  相似文献   

10.
Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.  相似文献   

11.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

12.
MicroRNA (miRNA) plays a crucial role in gene expression regulation. However, no data are available on change of miRNA expression of zebrafish (Danio rerio) after treatment with pesticides. We evaluated the effect of fipronil (5-amino-1-[2, 6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) and triazophos (3-(O, O-diethyl)-1-phenyl thiophosphoryl-1, 2, 4-triazol) and their mixture on miRNA expression in zebrafish. MiRNA expression profiles in zebrafish were altered after treatment with these chemicals. An association between these chemicals and the expression of 21 miRNAs was found 96 h after treatment. Among them, 14 miRNAs were differentially expressed due to the treatments with fipronil, triazophos and their mixture; 5 miRNAs showed altered expression level after treatment with formulations of these chemicals; miR-29b and miR-738 were differentially expressed after treatment with adjuvants. MiRNAs might present a novel toxicological response that could be used as a toxicological biomarker and have a different direction for future investigations of their association with miRNAs involved in chemical related diseases.  相似文献   

13.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-α,α,α -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g? 1; short-term experiment) to 200 days (initial concentration = 689 ng g? 1; long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

14.
Influence of soil texture and tillage on herbicide transport   总被引:2,自引:0,他引:2  
Two long-term no-till corn production studies, representing different soil texture, consistently showed higher leaching of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] to groundwater in a silt loam soil than in a sandy loam soil. A laboratory leaching study was initiated using intact soil cores from the two sites to determine whether the soil texture could account for the observed differences. Six intact soil cores (16 cm dia by 20 cm high) were collected from a four-year old no-till corn plots at each of the two locations (ca. 25 km apart). All cores were mounted in funnels and the saturated hydraulic conductivity (Ksat) was measured. Three cores (from each soil texture) with the lowest Ksat were mixed and repacked. All cores were surface treated with 1.7 kg ai ha(-1) [ring-14C] atrazine, subjected to simulated rainfall at a constant 12 mm h(-1) intensity until nearly 3 pore volume of leachate was collected and analyzed for a total of 14C. On an average, nearly 40% more of atrazine was leached through the intact silt loam than the sandy loam soil cores. For both the intact and repacked cores, the initial atrazine leaching rates were higher in the silt loam than the sandy loam soils, indicating that macropore flow was a more prominent mechanism for atrazine leaching in the silt loam soil. A predominance of macropore flow in the silt loam soil, possibly due to greater aggregate stability, may account for the observed leaching patterns for both field and laboratory studies.  相似文献   

15.
The aim of this study was to investigate the bacterial communities on paclobutrazol [(2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4-triazol-1-yl) pentan-3-ol]–applied agricultural soils by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rDNA gene fragments. Three different agricultural soil samples were collected from paclobutrazol applied mango and waxapple orchards, peanut fields and untreated rice fields as a control for DGGE analysis. The DGGE pattern of PCR- generated 16S rDNA gene fragments indicated that the bacterial populations from four paclobutrazol–applied soils of peanut fields were closely related to each other and two paclobutrazol–applied soils of mango and waxapple orchards harbored closely related bacterial communities. But, paclobutrazol–free agricultural soils comprised relatively a different bacterial group. However, the bacterial populations of mango and waxapple orchard are completely different from the bacterial communities of peanut field. Further purification and sequence analysis of 40 DGGE bands followed by phylogenetic tree assay showed similar results that soil bacteria from paclobutrazol applied mango and waxapple orchard are phylogenetically related. Based on the phylogenetic analysis, the clone M-4 was clad 100 % (bootstrap value) with Mycobacterium sp. The Mycobacterium sp. has been proved to degrade the phenolic compounds such as phenol, 4-chlorphenol, 2,4-dichlorophenol and paclobutrazol molecule containing chlorobenzene ring.  相似文献   

16.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-alpha,alpha,alpha -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g(-1); short-term experiment) to 200 days (initial concentration = 689 ng g(-1); long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

17.
Pesticide use in agroecosystems can adversely impact groundwater quality via chemical leaching through soils. Few studies have investigated the effects of antecedent soil water content (SWC) and timing of initial irrigation (TII) after chemical application on pesticide transport and degradation. The objectives of this study were to investigate the effects of antecedent soil water content (wet vs dry) and timing of initial irrigation (0h Delay vs 24h Delay) on aldicarb [(EZ)-2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyloxime] and carbofuran [2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate] transport and degradation parameters at a field site with Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf) soils. Aldicarb and carbofuran were applied to plots near field capacity (wet) or near permanent wilting point (dry). Half of the dry and wet plots received irrigation water immediately after chemical application and the remaining plots were irrigated after a 24h Delay. The transport and degradation parameters were estimated using the method of moments. Statistical significance determined for SWC included averages across TII levels, and significance determined for TII included averages across SWC levels. For the dry treatment, aldicarb was detected 0.10 m deeper (P<0.01) on two of the four sampling dates and carbofuran was detected at least 0.10 m deeper (P<0.05) on all of the sampling dates compared to the wet treatment. Pore water velocity was found to be higher (P<0.10) in the dry vs wet treatments on three of four dates for aldicarb and two of four dates for carbofuran. Retardation coefficients for both pesticides showed similar evidence of reduced values for the dry vs wet treatments. These results indicate deeper pesticide movement in the initially dry treatment. For aldicarb and carbofuran, estimated values of the degradation rate were approximately 40-49% lower in the initially dry plots compared to the initially wet plots, respectively. When the initial irrigation was delayed for 24h, irrespective of antecedent moisture conditions, a 30% reduction in aldicarb degradation occurred. This study illustrates the deeper transport of pesticides and their increased persistence when applied to initially dry soils.  相似文献   

18.
Laboratory studies were conducted to evaluate effects of tillage reversal and rainfall on 14C-atrazine (2-chloro4-ethylamino-6-isopropylamino- -triazine) leaching patterns. Twelve intact soil cores (16 cm dia x 20 cm deep) were collected from 8-yr no-till (NT) fields. Half the cores were tilled (5 cm deep) prior to 14C-atrazine treatment (2.7 mg core−1) to all cores. All cores received two rains (27 mm rain in 1.5 h, one day after application followed, two days later, by a 17 mm rain in 2.5 h) and leachate was collected and analyzed for atrazine. These rains simulated the timing, amount and duration of natural rainfall events from a tillage reversal field study. During the first high inte ity rainfall event, a pulse (2.1 μg L-1) of atrazine leached through tilled cores while leaching rate was linear and decreased (1.25 to 0.9 μg L-1) through un-tilled cores. Leaching rate was linear for both the tilled and un-tilled cores during the second rain. Less atrazine was left in the surface 5 cm of tilled soil than un-tilled after the two rains. Results confirmed field observations and suggested that when tillage is reversed on well structured soils, pesticide leaching may increase relative to un-tilled soil but these effects are probably confined to the first rain events after application only.  相似文献   

19.
The reproducibility of extraction of residues from spiked soil samples and from soils containing incurred residues was tested with 14C-labeled test compounds of different physical-chemical properties. Nearly 100% of the compounds added to the sample before extraction could be recovered with an average reproducibility relative standard deviation (CV) of 5.4%. The additional steps of the determination process (cleanup, evaporation, etc.) contributed to the major part of the variability of the results (CV = 10–20%). The incurred residues were most efficiently extracted with acetone for 30 min followed by the mixture of acetone/ethyl acetate 1:1 for additional 30 min. However, they could only be recovered at various extent (64–90% of total residues), underlying the importance of testing the efficiency of extraction. The residues were identified and quantified by gas chromatography applying thermionic detector. The performance parameters of the method complied with the international method validation guidelines, and they proved to be robust and suitable for determination of pesticide residues in soils of widely different physical–chemical properties.  相似文献   

20.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号