首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Qmax) of 324.8 mg/g and a dissociation constant (Kd) of 3.99 mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon.  相似文献   

2.
We investigated the occurrence of three pharmaceutical residues in four wastewater treatment plants (WWTPs) from northern Tunisia. The selected compounds were carbamazepine, naproxen, and ibuprofen; they are among the most commonly prescribed and widely used pharmaceutical agents worldwide. Samples (200?mL) were pre-concentrated using the solid phase extraction (SPE) enrichment procedure and the analysis of the pharmaceuticals was performed with high-performance liquid chromatography (HPLC-UV). The overall procedure provided limits of detection (LOD) lower than 0.5 µg.L?1and recoveries of 78–97%. For the carbamazepine compound, the mean concentrations were 60.58, 93.19, and 132 µg.L?1 for the Bizerte, Jendouba, and Tunis WWTPs, respectively. This pharmaceutical was not detected in the Beja WWTPs. Naproxen and ibuprofens were not detected in the Jendouba WWTP but were found in the three other WWTPs with concentrations ranging from 2.94 to 36.17 µg.L?1 and from 8.02 to 43.22 µg.L?1, respectively. From the obtained data, it seems that these WWTPs are not able to eliminate this kind of micro-pollutants.  相似文献   

3.
Quartz crystal nanobalance (QCN) technique is considered as a powerful mass sensitive sensor for monitoring of materials in the sub-nanogram level. In the current study, a method based on QCN technique developed to determine Telone in air. Various coating materials including methyl phenyl silicon, 75% phenyl (OV25) and molecularly imprinted polymer (MIP) were employed. The frequency shift of OV25-modified quartz crystal was found to be linear against organohalogen compounds [Telone (soil fumigant), Koril (Herbicide), Endosulfan (organochlorine insecticide) and Chloroform (solvent)] concentrations in the range of 2.4 to 48 mg L?1 for Telone vapor and 4.8–24 mg L?1 for three other vapors. The correlation coefficients for Telone, Koril, Endosulfan and Chloroform were 0.992, 0.996, 0.989 and 0.991, respectively. The principal component analysis was also utilized to process the frequency response data of the organic vapors. Using principal component analysis, it was found that more than 93.85% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful discrimination of Telone and other compounds was quite possible through the principal component analysis of the transient responses of the OV25-modified electrode. In the second method, a molecularly imprinted polymer-coated sensor for Telone was developed. Molecularly imprinted polymer coated quartz crystal (MIP-QCN) showed a selective response to Telone and gave a linear relationship between frequency shift and amount of Telone from 1 to 48 mg L?1. In this investigation, the proficiency of MIP-QCN and OV25-modified QCN sensors were compared.  相似文献   

4.
The goal of the present study was to investigate the feasibility of silicon dioxide (SiO2) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p′-dichlorodiphenyl-2,2-dichloroethylene (p,p′-DDD) and p,p′-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2–30 ng mL?1 and the correlation coefficients were in the range of 99.96–99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L?1 for p,p′-DDD, p,p′-DDT, o,p′-DDT, and p,p′-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4–112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment.  相似文献   

5.

Introduction

Magnetic Fe3O4 nanoparticles were prepared by coprecipitation and then were coated with SiO2 on the surface.

Materials and methods

Fe3O4@SiO2 composite microspheres were modified by KH570. Using molecular imprinting technology, atrazine magnetic molecularly imprinted polymer was prepared by using atrazine as template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linkers. The morphology, composition and magnetic properties of magnetic nanoparticles were characterized. The recognition selectivity of polymer was studied for template molecule and simulation by UV spectrophotometry. The adsorption properties and selectivity ability were analyzed by Scatchard analysis.

Results

Scatchard linear regression analysis indicated that there are two binding sites of the target molecules. The magnetic molecularly imprinted polymer has been applied to the analysis of atrazine in real samples.

Conclusion

The results show that: the recovery rates and the relative standard deviation were 94.0??98.7% and 2.1??4.0% in corn, the recovery rates and the relative standard deviation were 88.7??93.5% and 2.8??7.2% in water.  相似文献   

6.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   

7.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

8.
A deltamethrin-imprinted polymer (MIP1) was prepared using bis(-6-O-butanediacid monoester)-β-cyclodextrin (BBA-β-CD) as the functional monomer and toluene 2,4-diisocyanate (TDI) as the cross-linker. In comparison to the molecularly imprinted polymer where β-CD was applied as the functional monomer (MIP2), MIP1 showed a higher specific binding capacity (ΔCP) and an improved imprinting factor (IF) for deltamethrin. The selective recognition experiments demonstrated that compared to MIP2, MIP1 could better recognize its template over other substrates that had similar chemical structures. The solid phase extraction (SPE) of deltamethrin using MIP1 as the adsorbent was further investigated. The recoveries of the molecularly imprinted solid phase extraction (MISPE) column for deltamethrin were 83.2–93.4% with relative standard deviations (RSD) of 2.03–6.19%. The method has been successfully applied to the enrichment of trace deltamethrin from real water samples.  相似文献   

9.
A method for determination of etoxazole residues in apples, strawberries and green beans was developed and validated. The analyte was extracted with acetonitrile from foodstuff and a charcoal-celite cartridge was used for clean-up of raw extracts. Reversed phase high performance liquid chromatography with photodiode array detector (HPLC-DAD) was used for the determination and quantification of etoxazole residues in the studied samples. The calibration graphs of etoxazole in a solvent or three blank matrixes were linear within the tested intervals 0.01–2 mg L?1, with correlation coefficient of determination >0.999. The combined solid phase extraction (SPE) clean-up and the chromatographic method steps were sensitive and reliable for simultaneous determination of etoxazole residues in the studied samples. The average recoveries of etoxazole in the tested foodstuffs were between 93.4 to 102% at spiking levels of 0.01, 0.10, and 0.50 mg kg?1, with relative standard deviations ranging from 2.8 to 4.7%, in agreement with directives for method validation in residue analyses. The limit of detection (LOD) of the HPLC-DAD system was 100 pg. The limit of quantification of the entire method was 0.01 mg kg?1.  相似文献   

10.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

11.
A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L?1, respectively, for a linear response between 0.50 and 2.50 mg L?1, and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.  相似文献   

12.
The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive–non-competitive inhibition of the enzymes. The relationships between estimates of Km and Vmax calculated from the Michaelis–Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10?3, 1.12 × 10?2 and 1.07 × 10?2 mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, Ki were found to be 8.99 × 10?3, 3.55 × 10?2 and 1.36 × 10?2 mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively.  相似文献   

13.
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN?+?AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02?±?0.93 mg?kg?1. These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33?±?34.93 mg?C?kg?1 and 5.01?±?0.17 mg?CO2?g?1?soil?h?1, respectively. The results of the polymerase chain reaction–degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon–Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.  相似文献   

14.
Benomyl is a benzimidazol fungicide used against various crop pathogens. Although banned in many countries, it is still widely used worldwide and is listed in different monitoring programs among the substances to be monitored to assess human exposure to pesticide residues. The assessment of benomyl is mainly based on the analysis of the residues of its most important metabolite, carbendazim. Existing methods often lack of selectivity and display a limited performance because of the presence of co-extracted compounds. Molecularly imprinted polymers (MIPs) offer an alternative methodology, adsorbing preferentially those target molecules for which the polymers are specifically prepared. In this study, we optimized the synthesis of a polymer imprinted with benomyl. Tests of specificity recognition showed a good performance for carbendazim compared with other similar pesticides. The mean recovery of benomyl (measured as carbendazim) from water samples was estimated to be 90% for MIPs while with real soil samples collected in Morocco the recovery efficiency was 62%. Preliminary tests also suggest that this MIP can implement traditional SPE techniques for assessing benomyl residual concentrations in environmental samples.  相似文献   

15.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

16.

Introduction

Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1???g?L?1 for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources.

Materials and methods

Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH.

Results and discussion

The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64???g?mg?1 which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300?mg?L?1 for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0???g?L?1) of 3,640?L could be treated by 1?g of MIP with an estimated cost of US $1.5.

Conclusions

The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.  相似文献   

17.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

18.
A manual method for measuring reduced sulfur compounds in kraft pulp mill and sulfur recovery plant emissions was evaluated. The method involves removing SO2 from the gas stream (if present) with a citric acid-potassium citrate buffer that passes reduced sulfur compounds; thermal oxidation of all reduced sulfur compounds to SO2; collection of the SO2 in H2O2; and a titrimetric analysis of the H2O2 for SO4 2?. A heated filter removes alkaline particulate matter that would produce a negative interference if absorbed by the buffer. When used at kraft pulp mills, the method agrees closely with Reference Method 16, provided that nonregulated reduced sulfur compounds, such as carbonyl sulfide, are not present in the emissions. At sulfur recovery plants, nonregulated reduced sulfur compounds, such as thiophene, are likely to be present in the emissions and will produce a positive bias in the results obtained with this method. The precision of the method ranges from 1 to 7 percent relative standard deviation.  相似文献   

19.
Abstract

Nine different C18 solid‐phase extraction (SPE) cartridges were evaluated for their efficiency at extracting nine pesticides and two s‐triazine metabolites from spiked deionized water samples. The SPE cartridges were found to contain nitrogen (N) and/or phosphorus (P) contaminants and varied in their extraction efficiency for certain pesticides and metabolites. Four of the nine SPE cartridges gave acceptable (70 to 120%) pesticide and metabolite recovery percentages, while five cartridges had marginal (50 to 70%) to poor (< 50%) recoveries. Statistical analyses showed that the poor to marginal recoveries found for three compounds could not be explained by considering several indigenous chemical and physical traits of the cartridge. It is suggested that proper SPE cartridge selection for pesticide recovery should be evaluated using several different cartridges.  相似文献   

20.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0–10, 10–20, and 20–30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC50value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost–effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号