首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the clay fraction to other soil fractions was observed, implying a dynamic behavior of incorporated residues, which may result in bioaccessibility of the NER of nonylphenol.  相似文献   

2.
Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, 14C- and 13C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied 14C was mineralized. The bioavailable, water extractable portion was low (9 % of applied 14C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied 14C was incorporated into organo-clay complexes as NER, whereas 9 % of applied 14C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the clay fraction to other soil fractions was observed, implying a dynamic behavior of incorporated residues, which may result in bioaccessibility of the NER of nonylphenol.  相似文献   

3.
Use of municipal biowaste for composting instead of its disposal has become a major source of concern as regards contamination by hazardous substances. To elucidate the hazard potential of compost application, municipal biowaste was amended with 14C-labelled model substances (pyrene, simazine) and incubated in a pilot-scale composting simulation system. A mass balance incorporating the mineralization, metabolism and sorption of the two model substances was established over a period of 370 days. The results are quite different for the two chemicals, reflecting their intrinsic properties: more than 60% of the applied 14C-simazine resulted in non-extractable residues (NER). Silylation experiments indicated that the formation of NER from simazine and its metabolites was due to both physical entrapment in the matrix and chemical binding. The mineralization and formation of NER represented the major pathways of disappearance for pyrene during one year of composting, accounting for 60 and 26% of initially applied 14C-activity, respectively. Mineralization occurred delayed after the thermophilic phase. As regards remobilization, release of pyrene from NER during composting could be excluded, whereas simazine, data were inconclusive in this respect.  相似文献   

4.
This paper describes the induction of phenanthrene-catabolism within Phase II mushroom compost resulting from its incubation with (1) phenanthrene, and (2) PAH-contaminated soil. Respirometers measuring mineralization of freshly added 14C-9-phenanthere were used to evaluate induction of phenanthrene-catabolism. Where pure phenanthrene (spiked at a concentration of 400 mg kg(-1) wet wt.) was used to induce phenanthrene-catabolism in compost, induction was measurable, with maximal mineralization observed after 7 weeks phenanthrene-compost contact time. Where PAH-contaminated soil was used to induce phenanthrene-catabolism in un-induced compost, induction was observed after 5 weeks soil-compost contact time. Microcosm-scale amelioration of soil contaminated with 14C-phenanthrene (aged in soil for 516 days prior to incubation with compost) indicated that both induced (using pure phenanthrene) and uninduced Phase II mushroom composts were equally able to promote degradation of this soil-associated contaminant. After 111 days incubation time, 42.7 +/- 6.3% loss of soil-associated phenanthrene was observed in the induced-compost soil mixture, while 36.7 +/- 2.9% loss of soil-associated phenanthrene was observed in the uninduced-compost soil mixture. These results are notable as they indicate that while pre-induction of phenanthrene-catabolism within compost is possible, it does not significantly increase the extent of degradation when the compost is used to ameliorate phenanthrene-contaminated soil. Thus, compost could be used directly in the amelioration of contaminated land i.e. without pre-induction of catabolism.  相似文献   

5.
A loamy clay soil containing unextractable 14C-ring labeled atrazine residues was incubated in microcosms under abiotic and biotic conditions. The mineralization activity of the soil microflora was evaluated by the release of total CO2 and 14C02. After 63 days of sample incubation the total organic carbon mineralization was of 1.71%, that of 14C-residues was of 0.72% of the initial radioactivity. No direct relationship was established between the mineralization of atrazine residues and the global mineralization. The contribution of soil microorganisms in the release of 14C-residues was weak. The availability of non-extractable residues was mainly controlled by physico-chemical factors. The low value of the reextractability rate and the distribution of bound residues during the soil sample incubation shown the active role of organic matter in detoxification procedure. Ninety percent of the residues remained bound after 63 days of incubation and were thus, potentially available without biocide activity.

The fractionation of soil organic matter allowed to specify the distribution of bound residues within the organic compartments. After a long-stay of pesticides in soils, approximately 65% of bound residues were associated with humin.  相似文献   


6.
K. Figge  S.D. Haigh-Baird 《Chemosphere》1997,34(12):2621-2636
Sucrose polyesters (SPEs) were applied to soil at rates equivalent to 1062 to 1293 kg per hectare and incubated over periods of 100 to 403 days at 20 ± 2°C in darkness and at a soil moisture of 40 % of the maximum water holding capacity. All applied forms of SPEs were aerobically biodegraded to some degree in both American and German soil. However, the mineralization rates varied considerably and were dependent on both SPE and soil type. For example, sucrose octaoleate underwent slow and limited mineralization in the German soils Speyer and Borstel as well as in the American soil Madera, reaching only 6.9 – 18.4 % mineralisation after over 400 days incubation. The same material in the American soils Hollande, Thermal and Uvalde as well as in the German soil Speicherkoog, reached 35–52 % after the same incubation period. Of the SPEs most realistic for use in food products, the more liquid (i.e. with the least saturated fatty acids) underwent the most rapid and extensive mineralization. However, the mineralization rates for these materials were distinctly lower than the corresponding ones for sucrose octaoleate. In all cases the extent of mineralization of the SPEs in soil was significantly lower than that of a control fat (synthetic triglyceride mixture HB307), which typically underwent over 50 % mineralization in 60 days.

As field conditions would be considerably different to those in the laboratory (due to the presence of microbially acclimatised sewage sludge, fluctuations in soil temperature and moisture, and contamination by ecotoxic pollutants) it is difficult to predict accurately, on the basis of laboratory results, the likely rate of mineralization of SPEs in the field. However, this study does suggest that the more solid the SPE, the more likely it is to persist, and possibly accumulate, following application to soil.  相似文献   


7.
The effects of the herbicide PROPYZAMIDE are studied in laboratory and field conditions. The modifications involved are characterized by measurement of 14C-glucose mineralization and radioactivity incorporation into the soil fractions. In laboratory conditions, temperature and moisture are kept stable and the experiment is performed during less than 24 hours. In these conditions, Kerb 50 (commercial formulation of propyzamide) and the emulsifier (material used in propyzamide formulation) exert little effect on 14CO2 evolution. In field conditions, propyzamide andKerb 50 are applied once at two different doses: at field rate (1,5 kg/ha) and twentyfold this rate. Essays are duplicated. The herbicide (propyzamide in Celanol and Kerb 50) and the emulsifiers alone (Celanol and the material used in propyzamide formulation) are applied on the soil surface (application date: 3.02.81). Two weeks later and then every month during four months, samples are taken to the depth of about 5 cm (Propyzamide migrates very slowly in the first centimeters of the soil). The characterization experiment is performed on 10 g soil samples by 14C-glucose incubation at 28 degrees C during two hours. 14CO2 evolved is measured after incubation and acidification with HCl. Then radioactivity distribution in the soil is counted after chemical fractionation of soil. This distribution is about 10-16.5% as 14CO2, 22-37% in the acid-soluble fraction, 10-25% in the alkali-soluble fraction and 15-45% in the human fraction (measured as 14CO2 evolved after combustion). This distribution is little modified by the herbicides or the emulsifiers but its evolution is significantly related to environmental conditions (temperature). Nevertheless a few modifications are observed. They can be due to the herbicide propyzamide itself but the emulsifiers and the degradation products of propyzamide can also influence the measurement (After forty days in the soil, 70-95% of the starting active ingredient have disappeared). They can also be a result of the initial effects of the products (modification of the microflora and of the environment).  相似文献   

8.
The metabolic fate of 14C-phenyl-labeled herbicide clodinafop-propargyl (CfP) was studied for 28 days in lab assays using a soil from Germany (Ap horizon, silt loam, and cambisol). Mineralization amounted to 12.40% of applied 14C after 28 days showing a distinct lag phase until day 7 of incubation. Portions of radioactivity extractable by means of 0.01 M CaCl2 solution (bioavailable fraction) decreased rapidly and were 4.41% after 28 days. Even immediately after application, only 57.31% were extracted with the aqueous solvent. Subsequent extraction using accelerated solvent extraction (ASE; acetonitrile/water 4:1, v/v) released 39.91% of applied 14C with day 0 and 26.16% with day 28 of incubation from the samples. Non-extractable portions of radioactivity thus, increased with time amounting to 11.99% (day 0) and 65.00% (day 28). A remarkable increase was observed between 14 and 28 days correlating with the distinct increase of mineralization. No correlation was found throughout incubation with general microbial activity as determined by DMSO reduction. Analysis of the CaCl2 and ASE extracts by radio-TLC, radio-HPLC and GC/MS revealed that CfP was rapidly cleaved to free acid clodinafop (Cf), which was further (bio-) transformed; DT50 values (based on radio-TLC detection of the parent compound) were far below 1 day (CfP) and about 7 days (Cf). TLC analysis pointed to 2-(4-hydroxyphenoxy)-propionic acid as further metabolite. Due to fractionation of non-extractable residues, most of the 14C was associated with fulvic and humic acids, portions in humin fractions and non-humics were moderate and low, respectively. Using a special strategy, which included pre-incubation of the soil with CfP and then mineralization of 14C-CfP as criterion, a microorganism was isolated from the soil examined. The microorganism grew using CfP as sole carbon source with concomitant evolution of 14CO2. The bacterium was characterized by growth on commonly used carbon sources and by 16S rDNA sequence analysis. The sequence exhibited high similarity with that of Rhodococcus wratislaviensis (99.56%; DSM 44107, NCIMB 13082).  相似文献   

9.
Abstract

In conformity with Guideline 4.1 of the Federal German Biological Agency, degradation experiments with the fungicide active ingredient [benzene ring‐U‐14C]anilazine and its major metabolite [triazine ring‐U‐14C]dihydroxy‐anilazine were carried out in an orthic luvisol. Mineralization of the benzene ring carbon of anilazine amounted to less than 2 % in 110 days and that of the triazine ring carbon of dihydroxy‐anilazine to less than 8 %. Increasing the incubation temperature from 22 °C to 30 °C and adding organic substance influenced the mineralization slightly. In soils which received two or three applications in succeeding years with subsequent ageing in the open‐air lysimeter no stimulation of the mineralization was observed. Extractions after incubation showed that only 10.2 to 18.6 % of the 14C‐activity applied with anilazine was extractable with acetone/CaCl2. The major proportion was bound in the fractions of the soil organic matter, namely 45.0 to 59.6 % of the radiocarbon applied was accounted for by the humin fraction, 12.0 to 27.4 % by the fulvic acids, and 9.4 to 15.0 % by the humic acids. In the case of dihydroxy‐anilazine, 28.9 to 89.7 % of the applied 14C‐activity was extractable with acetone/CaCl2. Of tJhe radiocarbon bound in the soil, the greatest proportion, i.e. 18.5 to 35.5 % of the radiocarbon applied, was accounted for by the fulvic acids.  相似文献   

10.
Kale SP  Murthy NB  Raghu K 《Chemosphere》2001,44(4):893-895
14C-carbofuran underwent considerable mineralization (approximately 30% of the applied activity) in Vertisol soil under moist and flooded conditions during 60 days incubation. Bound residues were formed under both the conditions, the extent being more in moist soils (approximately 55% of the applied activity) than under flooded conditions (approximately 41% of the applied activity). 3-Keto carbofuran was the only significant metabolite observed under flooded conditions.  相似文献   

11.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

12.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

13.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

14.
Degradation studies were conducted with the fungicide (14)C-dithianon under standard conditions for 64 days in soil. The compound is characterized by mineralization losses of approx. 33% and the formation of non-extractable (bound) residues of approx. 63% in 64 days. The microbial activity of the soil was stimulated by an amendment of corn straw simulating post-harvest conditions. This addition of straw decreased the mineralization of the compound initially. At the end of the incubation period, however, the mineralization rate was higher in the straw amended soil compared to the control. The addition of straw increased the amount of radiocarbon in the desorption solutions. Thus higher amounts of incorporated radiocarbon could be found in the biomass of the amended soil. Model calculations show that the straw amendment has a sustained influence on the mineralization of the compound. Potential mechanisms of the effect of dissolved organic matter on the sorption/desorption equilibrium are discussed.  相似文献   

15.
Chlorpyrifos degradation in Turkish soil   总被引:12,自引:0,他引:12  
Degradation of chlorpyrifos was evaluated in laboratory studies. Surface (0-15 cm) and subsurface (40-60 cm) clay loam soils from a pesticide-untreated field were incubated in biometer flasks for 97 days at 25 degrees C. The treatment was 2 micrograms g-1 [2,6-pyridinyl-14C] chlorpyrifos, with 74 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil subsamples were also methanol-extracted [ambient shaking, then supercritical fluid extraction (SFE)], then analyzed by thin-layer chromatography. Total 14C and unextractable soil-bound 14C residues were determined by combustion. From the surface and subsurface soils, 41 and 43% of the applied radiocarbon was evolved as 14CO2 during 3 months incubation. The time required for 50% loss of the parent insecticide in surface and subsurface soils was about 10 days. By 97 days, chlorpyrifos residues and their relative concentration (in surface/subsurface) as % of applied 14C were: 14CO2 (40.6/42.6), chlorpyrifos (13.1/12.4), soil-bound residues (11.7/11.4), and 3,5,6-trichloropyridinol (TCP) (3.8/4.8). Chlorpyrifos was largely extracted by simple shaking with methanol, whereas TCP was mainly removed only by SFE. The short persistence of chlorpyrifos probably relates to the high soil pH (7.9-8.1).  相似文献   

16.
Giessing AM  Johnsen AR 《Chemosphere》2005,61(9):1281-1287
We compared microbial mineralization of [4,5,9,10-14C]pyrene and its eukaryotic [4,5,9,10-14C]pyrene metabolites in estuarine sediments. Metabolites were obtained by exposing the estuarine deposit-feeding polychaete Nereis diversicolor to sediment-associated 14C-pyrene, followed by homogenization of the worms and extraction of the pyrene-metabolites. In sediment from a pristine Danish Fjord only 2.6% of the added metabolite-label and 1.7% of the pyrene-label were mineralized to 14CO2 during 175 days incubation. Pre-exposure of the pristine sediment to unlabelled pyrene for 60 days increased the mineralization potential for 14C-pyrene substantially, as 81.2% was mineralized to 14CO2 during 95 days incubation, whereas 14C-pyrene metabolite label was unaffected by pre-exposure to pyrene. In comparison, naturally aged bunker-oil contaminated sediment did not show elevated potentials for mineralization of neither 14C-pyrene nor 14C-metabolites. Six bacterial strains of known pyrene degraders were tested for growth on crystalline 1-hydroxypyrene. 1-Hydroxypyrene is the only intermediate eucaryotic metabolite of pyrene. The results indicate that 1-hydroxypyrene was not utilized as a sole source of carbon and energy by any of them. In addition, respiration was depressed in all six strains when exposed to crystalline 1-Hydroxypyrene, demonstrating an acute toxic effect of 1-hydroxypyrene. The results presented here suggest that microbial degradation of pyrene is not enhanced by release of aqueous and polar metabolites by marine invertebrates.  相似文献   

17.
Contamination of soil with hydrocarbons occurs frequently when petroleum ducts are damaged. Restoration of those contaminated soils might be achieved by applying readily available organic material. An uncontaminated clayey soil sampled in the vicinity of a duct carrying diesel which ruptured recently, was contaminated in the laboratory and amended with or without maize or biosolids while production of carbon dioxide (CO(2)), dynamics of ammonia (NH(4)(+)), nitrates (NO(3)(-)), and total petroleum hydrocarbons (TPH) were monitored. The fastest mineralization of diesel, as witnessed by production of CO(2), was found when biosolids were added, but the amount mineralized after 100 days, approximately 88%, was similar in all treatments. Approximately 5 mg of the 48 mg TPH kg(-1) found in the sterilized soil at the beginning of the experiment could not be accounted for after 100 days. The concentration of TPH in the unsterilized soil decreased rapidly in all treatments, but the rate of decrease was different between the treatments. The fastest decrease was found in the soil amended with biosolids and approximately 30 mg TPH kg(-1) or 60% could not be accounted for within 7 days. The decrease in concentration of TPH at the onset of the incubation was similar in the other treatments. After 100 days, the concentration of TPH was similar in all soils and appear to stabilize at 19 mg TPH kg(-1) soil. It was concluded that biosolids accelerated the decomposition of diesel and TPH due to its large nutrient content, but after 100 days the amount of diesel mineralized and the residual concentration of TPH was not affected by the treatment applied.  相似文献   

18.
Lee JK  Führ F  Kwon JW  Ahn KC 《Chemosphere》2002,49(2):173-181
In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.  相似文献   

19.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k(1)), the growth-linked mineralization rate constant (k(2)) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k(1) significantly decreased in sequence of A horizon (0.113% day(-1)) > B horizon (0.024% day(-1)) = C horizon (0.026% day(-1)) and in each soil horizon was greater than k(2). Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k(1) or k(2), except that k(1) was significantly greater in upper slopes (0.170% day(-1)) than in lower slopes (0.080% day(-1)). Neither k(1) nor k(2) was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

20.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typically less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0-5 cm and 5-15 cm). Half-lives (t(?)) varied from 3 days to 51 days with the total 2,4-D mineralization (M(T)) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p < 0.001) influenced both t(?) and M(T). Second-order polynomial equations best described the relations of temperature with t(?) and M(T) as was expected from a biological system. However, the interaction and variability of t(?) and M(T) among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号