首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在微孔盘曝气系统中,针对悬浮填料挂膜过程,展开中试试验研究。试验结果表明,在HRT仅1h的连续流曝气系统中,悬浮填料挂膜快。曝气强度不同,悬浮填料挂膜特性和生物膜量以及对COD的去除效果相差很大。试验发现微孔盘曝气系统中悬浮填料的最适宜曝气强度范围为8~10m3/(m2·h),在此范围内,系统的溶解氧为3.9~5.2mg/L,生物膜量为3.3~3.5g/L,对COD的去除率在70%~80%。在上述基础上还对不同型号的悬浮填料进行了优选。  相似文献   

2.
2种填料作为生物膜载体修复微污染河水的比较   总被引:1,自引:0,他引:1  
采用序批式生物反应器(SBBR),在水温为(19.0±1.5)℃,DO≥4.5 mg/L条件下,比较基于2种生物膜填料(竹丝和空心塑料球)上的微生物对微污染河水中高锰酸钾指数(COD Mn)、总氮(TN)和总磷(TP)等的去除效果。结果表明,经过4 h的运行,竹丝作为生物膜载体时,COD Mn、TN的去除分别为17.5%~48.8%和49.38%~70.93%,但TP的去除效果不明显;而基于空心塑料球的生物膜对COD Mn的去除率仅为2.4%~42%,对TN和TP去除效果均不明显。通过显微分析发现,基于竹丝填料生物载体上微生物种类、数量明显多于空心塑料球。  相似文献   

3.
火山石生物滤床对微囊藻毒素的去除   总被引:1,自引:0,他引:1  
微囊藻水华爆发导致大量微囊藻毒素释放至地表水环境中,严重威胁着饮用水供水安全.通过不同条件火山石自然曝气生物滤床(活性挂膜、灭活挂膜、未挂膜和无填料滤床)对不同形态、构型(MC-LR、MC-RR)的微囊藻毒素的去除实验,探讨其去除效率、途径和机理.结果表明,火山石自然曝气生物滤床对微囊藻毒素的去除是微生物降解和基质吸附共同作用的结果.胞外毒素和胞内毒素的总去除率分别为58%和91%.其中,胞外毒素主要通过微生物降解作用途径去除,占胞外毒素总去除率的(41±4.2)%,胞内毒素则主要通过基质吸附途径去除,占胞内毒素总去除率的(64±5.1)%.生物膜吸附、光降解等其他途径无明显作用.另外,不同构型的微囊藻毒素在火山石自然曝气生物滤床中均能有效去除,MC-LR和MC-RR的去除率分别为68%和54%.  相似文献   

4.
采用固相萃取高效液相色谱法检测巢湖和太湖水体中5种微囊藻毒素(MCs)——MC-RR、MC-YR、MC-LR、MC-LA、MC-LY的含量。结果表明,巢湖水体中的MCs以MC-RR、MC-LA、MC-LY为主,太湖水体主要以MC-RR、MC-LR、MC-LA为主,其中太湖MC-LR的最高质量浓度为2.558μg/L,超过《地表水环境质量标准》(GB 3838—2002)中对集中式生活饮用水地表水源地的限定值(1μg/L)。分析巢湖和太湖水体中MCs与水质指标之间的相关性,发现同种MCs与两湖环境因子的相关性存在明显差异。逐步回归拟合结果表明,氨氮和DO分别能与巢湖MC-LR、MC-LY进行拟合;Chl-a、TOC能与太湖MC-LR回归拟合,TOC能与太湖MC-YR进行拟合。由于多数MCs不能通过水质指标的拟合结果来预测,因此在未来研究中需结合环境因子和MCs的遗传机制来共同分析MCs在水中的分布规律。  相似文献   

5.
悬浮填料生物膜床反应器处理高校生活污水   总被引:1,自引:0,他引:1  
本研究利用悬浮填料生物膜床反应器处理高校生活污水 ,对CODCr、氨氮和总磷有较好的去除效果。水力停留时间 6h时 ,CODCr总去除率最高可达到 95 % ,出水CODCr稳定在 30mg/L以下 ;总磷去除率达到 5 0 %以上 ,出水总磷含量低于 0 5mg/L ;对NH3 N的去除率可以稳定在 80 %以上 ,出水NH3 N低于 1mg/L。  相似文献   

6.
研究了以丝瓜络作为生物膜载体的曝气浸没固定生物膜反应器在处理化粪池出水时的可行性以及运行性能。结果表明,丝瓜络生物膜反应器可以在2周内成功启动;水力停留时间(HRT)对COD和氨氮的去除效果有显著影响,在水力停留时间为4 h的条件下,系统对COD和氨氮的去除率分别达到了78.5%和96.4%。另外,系统有较强抗有机污染物冲击负荷的能力,当COD和氨氮的进水浓度分别为59.3 mg/L和15.9 mg/L时,系统对有机污染物的去除效果较佳,去除率分别达到了80.0%和98.9%。  相似文献   

7.
采用陶粒滤料和活性炭滤料的2组曝气生物滤池(BAF)处理含CMC模拟退浆废水,在水力负荷0.071 m3·(m2·h)-1、水力停留时间24 h条件下,分析曝气生物滤池对COD、CMC和浊度去除效果和曝气强度对滤池运行的影响,研究滤柱高度方向污染物去除规律以及和微生物量、微生物活性间的关系。研究结果表明,随着气水比的增大,生物滤池对COD、CMC的去除效率增大,强烈的曝气作用会引起出水浊度增大。在气水比为4∶1的条件下,2组生物滤池对COD和CMC的平均去除率分别约为72%和65%、67%和62%。曝气生物滤池对COD、CMC、浊度的主要去除区域分别位于滤柱1.5、1.3和1.1 m高度以下区域。陶粒滤柱相对活性炭滤柱微生物量略高,两组滤池单位滤料微生物量和微生物脱氢酶活性沿滤柱高度方向变化趋势相似。两组滤池对CMC的去除主要依靠吸附作用,生物降解部分仅占CMC总去除率的34.7%和26.1%。  相似文献   

8.
竹制填料生物接触氧化工艺处理污染河水   总被引:1,自引:0,他引:1  
针对受污染的湖溪河水质特征,以传统弹性塑料填料做对比,研究以竹球和竹丝为填料的生物接触氧化工艺,考察填料的挂膜时间、生物量和污水处理效果;确定连续曝气和间歇曝气时反应器的最优运行工况:连续曝气时为HRT=7.5 h,DO=3 mg/L;间歇曝气时为厌氧1.2 h、好氧6.3 h交替运行。实验结果表明,与弹性塑料填料相比,竹制填料挂膜速度快,竹球填料的水处理效果最好;连续曝气最优工况下竹球填料反应器中COD、TN、NH3-N和TP的平均去除率分别为66.7%、47.9%、57.1%和30.6%;间歇曝气最优工况下竹球填料反应器中COD、TN、NH3-N和TP的平均去除率分别64.08%、39.95%、60.7%和54.68%;竹制填料可替代传统的塑料填料作为生物接触氧化工艺的载体填料。  相似文献   

9.
采用SDC-03型填料作为生物载体,对厌氧/特异性移动床生物膜反应器(A/SMBBR)工艺处理低碳氮比工业废水的挂膜启动及稳定运行过程进行优化分析。通过单因素试验和基于Box-Behnken设计的响应曲面法考察了碳源投加量(以乙醇为碳源)、水力停留时间(HRT)及填料填充率对系统TN去除率的影响及其交互作用。结果表明:(1)3个参数对TN去除率影响顺序为填料填充率碳源投加量HRT,其中填料填充率和HRT之间的交互作用最显著。(2)模型预测的最佳条件为碳源投加量90mg/L、HRT=3.0d、填料填充率55%,TN去除率预测值为90.78%。在该条件下TN去除率实际值达91.02%,与模型预测值基本一致,表明响应曲面模型与实际情况拟合良好。  相似文献   

10.
不同类型填料的三维电极/Fenton试剂法处理苯酚废水   总被引:4,自引:0,他引:4  
采用不同类型填料对三维电极/Fenton试剂法处理苯酚模拟废水进行研究.结果表明.不同类型活性炭填料对苯酚去除率有很大影响,粒炭不适合做粒子电极,采用5.0 mm柱炭处理效果较好;采用石英砂与活性炭混合填料的处理效果比单一活性炭填料好,但苯酚去除率提高不明显;电解槽反应器中按比例投加涂膜活性炭和活性炭混合填料能明显提高苯酚去除率;当涂膜活性炭与活性炭体积比为1,2时,苯酚去除率最高,达96.8%.  相似文献   

11.
The objective of this investigation was to compare two biological systems using attached-growth biomass, for treatment of leachates generated in a typical municipal solid waste sanitary landfill. A moving-bed biofilm process, which is a relatively new type of biological treatment system, has been examined. It is based on the use of small, free-floating polymeric (polyurethane) elements, while biomass is being grown and attached as biofilm on the surface of these porous carriers. A granular activated carbon (GAC) moving-bed biofilm process was also tested. This method combines both physico-chemical and biological removal mechanisms for the removal of pollutants. The presence of GAC offers a suitable porous media, which is able to adsorb both organic matter and ammonia, as well as to provide an appropriate surface onto which biomass can be attached and grown. A laboratory-scale sequencing batch reactor (SBR) was used for the examination of both carriers. The effects of different operation strategies on the efficiency of these biological treatment processes were studied in order to optimize their performance, especially for the removal of nitrogen compounds and of biodegradable organic matter. It has been found that these processes were able to remove nitrogen content almost completely and simultaneously, the removal of organic matter (expressed as BOD5 and COD), color and turbidity were sufficiently achieved.  相似文献   

12.
多孔矿物载体厌氧固定床处理有机废水研究   总被引:1,自引:0,他引:1  
通过天然浮石和塑料多孔空心球而制成复合式多孔矿物载体应用于厌氧固定床反应器中,研究反应器挂膜性能,以及处理生活污水、啤酒废水效果,应用扫描电镜观察生物膜微生物相的形态结构.结果表明,反应器挂膜69 d后COD去除率稳定在70%以上,初次启动成功;处理生活污水中平均COD去除率为61.72%;处理啤酒废水中COD去除率高...  相似文献   

13.
考察冬季低温下沸石联合生物吸附再生工艺和改进式沸石联合生物吸附再生工艺对城市污水的脱氮效率,结果表明在HRT为3.5 h下,ZCS工艺出水氨氮为11.65 mg/L,总氮高于20 mg/L.而相同条件下MZCS工艺氨氮出水为5.45 mg/L,总氮去除率比原ZCS工艺提高了11%,均值为16.8 mg/L.通过聚合酶链式技术,变性梯度凝胶电泳和电镜扫描技术发现两工艺微生物多样性、丰度高于传统活性污泥法,兼具活性污泥法和生物膜法的微生物特性.  相似文献   

14.
载体的选择对氧化亚铁硫杆菌的固定化至关重要,选择活性炭、煤矸石、陶粒和沸石4种载体,考察这4种载体在不同添加量下对氧化亚铁硫杆菌氧化活性的影响,并分析载体表面附着的生物量.结果表明,这4种材料均可作为细菌固定化培养的载体材料.在载体添加量为25~75 g/L条件下,载体对细菌生长过程中Fe2 浓度变化影响最大,随载体添加量的增加,Fe2 氧化速率增加,而对pH变化和Eh变化无明显影响.单位重量的活性炭、陶粒和沸石的生物量高于单位重量煤矸石的,但随载体添加量的增加,其生物量减小;对煤矸石,随载体添加量的增加,其生物量增加.  相似文献   

15.
Simultaneous removal of hydrogen sulfide (H2S) and ammonia (NH3) gases from gaseous streams was studied in a biofilter packed with granule activated carbon. Extensive studies, including the effects of carbon (C) source on the growth of inoculated microorganisms and gas removal efficiency, product analysis, bioaerosol emission, pressure drop, and cost evaluation, were conducted. The results indicated that molasses was a potential C source for inoculated cell growth that resulted in removal efficiencies of 99.5% for H2S and 99.2% for NH3. Microbial community observation by scanning electron microscopy indicated that granule activated carbon was an excellent support for microorganism attachment for long-term waste gas treatment. No disintegration or breakdown of biofilm was found when the system was operated for 140 days. The low bioaerosol concentration emitted from the biofilter showed that the system effectively avoided the environmental risk of bioaerosol emission. Also, the system is suitable to apply in the field because of its low pressure drop and treatment cost. Because NH3 gas was mainly converted to organic nitrogen, and H2S gas was converted to elemental sulfur, no acidification or alkalinity phenomena were found because of the metabolite products. Thus, the results of this study demonstrate that the biofilter is a feasible bioreactor in the removal of waste gases.  相似文献   

16.
Abstract

Simultaneous removal of hydrogen sulfide (H2S) and am- gases. monia (NH3) gases from gaseous streams was studied in a biofilter packed with granule activated carbon. Extensive studies, including the effects of carbon (C) source on the growth of inoculated microorganisms and gas removal efficiency, product analysis, bioaerosol emission, pressure drop, and cost evaluation, were conducted. The results indicated that molasses was a potential C source for inoculated cell growth that resulted in removal efficiencies of 99.5% for H2S and 99.2% for NH3. Microbial community observation by scanning electron microscopy indicated that granule activated carbon was an excellent support for microorganism attachment for long-term waste gas treatment. No disintegration or breakdown of biofilm was found when the system was operated for 140 days. The low bioaerosol concentration emitted from the biofilter showed that the system effectively avoided the environmental risk of bioaerosol emission. Also, the system is suitable to apply in the field because of its low pressure drop and treatment cost. Because NH3 gas was mainly converted to organic nitrogen, and H2S gas was converted to elemental sulfur, no acidification or alkalinity phenomena were found because of the metabolite products. Thus, the results of this study demonstrate that the biofilter is a feasible bioreactor in the removal of waste gases.  相似文献   

17.

Introduction

Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1???g?L?1 for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources.

Materials and methods

Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH.

Results and discussion

The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64???g?mg?1 which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300?mg?L?1 for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0???g?L?1) of 3,640?L could be treated by 1?g of MIP with an estimated cost of US $1.5.

Conclusions

The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.  相似文献   

18.
Background, Aims and Scope Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). As a result of eutrophication, massive cyanobacterial blooms occur more frequently and MCs represent important contaminants of freshwater ecosystems. Bacterial biodegradation is considered a main mechanism for MC breakdown in environmental conditions. While existing studies were mostly focused on MC biodegradation by planktonic bacteria, our experiments examined the fate and kinetics of MC degradation in river-originated phototrophic biofilms and investigated factors influencing the rate of MC removal. Methods The fate of dissolved MCs was studied in laboratory microcosms with different composition (containing water only, water with phytoplankton and/or phototrophic biofilms). Biofilms originated from river ecosystem were pre-incubated under various conditions (with/without presence of cyanobacterial biomass or model organic substrates: glucose and protein - casein). Changes in MC concentration (0-14 days) in water columns were measured by HPLC DAD after external additions of purified MCs (160 μg L-1, MC-LR and MC YR), and halftimes (t1/2) of MC removal were estimated. Results and Discussion The slow degradation of MC was revealed in tap water (t1/2 ~ 14 days) and river water without cyanobacteria (t1/2 ~ 8 days). Enhanced removal occurred in the presence of natural planktonic cyanobacteria (t1/2 ~ 44 h), most probably due to microorganisms associated with the biomass of cyanobacterial bloom. More rapid MC elimination occurred in the variants containing phototrophic biofilms, and was particularly pronounced at those biofilms pre-cultivated in the presence of cyanobacterial blooms (t1/2 ~ 20 h). Much slower removal was observed in the variants simulating possible substrate-dependent induction of microorganism metabolism (biofilms pre-incubated with glucose: t1/2 ~ 35 h, and casein: t1/2 ~ 80 h). After termination of experiments, total amounts of MCs accumulated in the biofilms were below 5% of the initial toxin level revealing significant biodegradation processes. Conclusion The microcosm studies contributed to understanding of the environmental fate of MCs and revealed a rapid biodegradation by phototrophic biofilms. The rate of MC elimination depends on history of biofilm community, previous contact with cyanobacteria seems to be a selective factor improving the biodegradation potential. Recommendation and Outlook Our results experimentally showed a positive role of biofilms in MC elimination during water treatment processes such as bank filtration or slow sand filtration, and could eventually serve for further research of biofilm-based technological applications for MCs removal in small-scale drinking water treatment facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号