首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

3.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

4.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   

5.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   

6.
The aim of the present work was to determine the denitrification potential of aerobic granular sludge for concentrated nitrate wastes. We cultivated mixed microbial granules in a sequencing batch reactor operated at a superficial air velocity of 0.8 cm s−1. The denitrification experiments were performed under anoxic conditions using serum bottles containing synthetic media with 225-2250 mg L−1 NO3-N. Time required for complete denitrification varied with the initial nitrate concentration and acetate to nitrate-N mass ratio. Complete denitrification of 2250 mg L−1 NO3-N under anoxic conditions was accomplished in 120 h. Nitrite accumulation was not significant (<5 mg N L−1) at initial NO3-N concentrations below 677 mg L−1. However, denitrification of higher concentrations of nitrate (?900 mg N L−1) resulted in buildup of nitrite. Nevertheless, nitrite buildups observed in present study were relatively lower compared to that reported in previous studies using flocculent activated sludge. The experimental results suggest that acetate-fed aerobic granular sludge can be quickly adapted to treat high strength nitrate waste and can thus be used as seed biomass for developing high-rate bioreactors for efficient treatment of concentrated nitrate-bearing wastes.  相似文献   

7.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

8.
We assessed satellite derived tropospheric NO2 distribution on a global scale and identified the major NO2 hotspot regions. Combined GOME and SCIAMACHY measurements for the period 1996-2006 have been used to compute the trends over these regions. Our analysis shows that tropospheric NO2 column amounts have increased over the newly and rapidly developing regions like China (11 ± 2.6%/year), south Asia (1.76 ± 1.1%/year), Middle East (2.3 ± 1%/year) and South Africa (2.4 ± 2.2%/year). Tropospheric NO2 column amounts show some decrease over the eastern US (−2 ± 1.5%/year) and Europe (0.9 ± 2.1%/year). We found that although tropospheric NO2 column amounts decreased over the major developed regions in the past decade, the present tropospheric NO2 column amounts over these regions are still significantly higher than those observed over newly and rapidly developing regions (except China). Tropospheric NO2 column amounts show some decrease over South America and Central Africa, which are major biomass burning regions in the Southern Hemisphere.  相似文献   

9.
Das S  Ghosh A  Adhya TK 《Chemosphere》2011,84(1):54-62
Combination of divergent active principles to achieve broad-spectrum control is gaining popularity to manage the weed menace in intensive agriculture. However, such application could have non-target impacts on the soil processes affecting soil ecology and environmental interactions. A field experiment was conducted to investigate the impact of separate and combined applications of herbicides bensulfuron methyl and pretilachlor on the emission of N2O and CH4, and related soil and microbial parameters in a flooded alluvial field planted to rice cv Lalat. Single application of the herbicide bensulfuron methyl or pretilachlor resulted in a significant reduction of N2O and CH4 emissions while the combination of these two herbicides distinctly increased N2O and CH4 emissions. Cumulative N2O emissions (kg N2O-N) followed the order of bensulfuron methyl (0.35 kg ha−1) < pretilachlor (0.36 kg ha−1) < control (0.45 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (0.49 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (0.54 kg ha−1). Cumulative CH4 emissions (kg CH4), on the other hand, followed the order of bensulfuron methyl (47.89 kg ha−1) < pretilachlor (73.17 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (93.50 kg ha−1) < control (106.54 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (124.67 kg ha−1). The inhibitory effect of separate application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% on N2O emission was linked to lower mineral N, lower denitrifying and nitrifying activity and low denitrifier and nitrifier populations. Inhibitory effect on CH4 emission, on the contrary, was linked to prevention in the drop of redox potential, lower readily mineralizable carbon (RMC) and microbial biomass carbon (MBC) contents as well as lower methanogenic and higher methanotrophic bacterial population. Admittedly, stimulatory effect of combined application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% at double dose on N2O and CH4 emission was related to reversal of the identified indicators of inhibition. Results indicate that while individual application of herbicides bensulfuron methyl 0.6% or pretilachlor 6.0% can reduce N2O and CH4 emission from flooded soil planted to rice, their combined application at normal dose can keep the emission at a comparatively lower level with significantly higher grain yield as compared to the herbicides applied alone.  相似文献   

10.
Chang YK  Wu CC  Lee LT  Lin RS  Yu YH  Chen YC 《Chemosphere》2012,87(1):26-30
A mass screening of lung function associated with air pollutants for children is limited. This study assessed the association between air pollutants exposure and the lung function of junior high school students in a mass screening program in Taipei city, Taiwan. Among 10,396 students with completed asthma screening questionnaires and anthropometric measures, 2919 students aged 12-16 received the spirometry test. Forced vital capacity (FVC) and forced expiratory flow in 1 s (FEV1) in association with daily ambient concentrations of particulate matter with diameter of 10 μm or less (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) were assessed by regression models controlling for the age, gender, height, weight, student living districts, rainfall and temperature. FVC, had a significant negative association with short-term exposure to O3 and PM10 measured on the day of spirometry testing. FVC values also were reversely associated with means of SO2, O3, NO2, PM10 and CO exposed 1 d earlier. An increase of 1-ppm CO was associated with the reduction in FVC for 69.8 mL (95% CI: −115, −24.4 mL) or in FEV1 for 73.7 mL (95% CI: −118, −29.7 mL). An increase in SO2 for 1 ppb was associated with the reductions in FVC and FEV1 for 12.9 mL (95% CI: −20.7, −5.09 mL) and 11.7 mL (95% CI: −19.3, −4.16 mL), respectively. In conclusion, the short-term exposure to O3 and PM10 was associated with reducing FVC and FEV1. CO and SO2 exposure had a strong 1-d lag effect on FVC and FEV1.  相似文献   

11.
Phosphine migration at the water-air interface in Lake Taihu, China   总被引:1,自引:0,他引:1  
Han C  Geng J  Zhang J  Wang X  Gao S 《Chemosphere》2011,82(6):935-939
The diurnal atmospheric phosphine (PH3) concentrations and fluxes at the water-air interface in Lake Taihu were reported. The results showed that the PH3 flux at the water-air interface ranged from −69.9 ± 29.7 to 121 ± 42 ng m−2 h−1, with a mean flux of 14.4 ± 22.5 ng m−2 h−1. The fluxes were both negative and positive during the diurnal period, indicating that the lake can act as a sink and a source of PH3. In addition, the PH3 fluxes were positively correlated with water temperature, total soluble phosphorus and soluble reactive phosphorus, while they were negatively correlated with water redox potential. A similar diurnal variation curve of atmospheric PH3 concentrations was observed during all four seasons, with the maximum level occurring in early morning and the minimum appearing around midday. These findings suggest that light plays an important role in the elimination of atmospheric PH3. A significant positive correlation was also found between air temperature and atmospheric PH3 concentration. The mean flux of PH3 in Lake Taihu was higher than in other reported wetlands, with an estimated annual emission of PH3 to the atmosphere of 2.94 × 105 g y−1.  相似文献   

12.
Ammonium nitrate is one of the most widespread contaminants related with the viability of natural amphibian populations. In this study we have evaluated in terms of mortality and total length the effects that a previous sublethal pulse to ammonium nitrate generates in Epidalea calamita. Experiments were divided in two phases. In the first one, tadpoles were exposed to two different treatments, with and without a low ammonium nitrate concentration (22 mg NH4NO3 L−1). The second phase consisted in static toxicity experiments from both origin treatments with five different nominal concentrations (0, 22, 45, 90 and 180 mg NH4NO3 L−1). Results showed that tadpoles that had experienced a previous sublethal exposure showed a negative effect on survival (57% of reduction in the LC50 value) and total length, throughout an increase in their sensitivity. These results could help us to understand the situation of amphibian populations inhabiting aquatic ecosystems exposed to discontinuous and variable pulses of pollutants.  相似文献   

13.
This research focused on photocatalytic degradation of imidacloprid, thiamethoxam and clothianidin employing a tailor-made photoreactor with six polychromatic fluorescent UVA (broad maximum at 355 nm) lamps and immobilised titanium dioxide (TiO2) on glass slides. The disappearance was followed by high pressure liquid chromatography (HPLC-DAD) analyses, wherein the efficiency of mineralization was monitored by measurements of total organic carbon (TOC). Within 2 h of photocatalysis, all three neonicotinoids were degraded following first order kinetics with rate constants k = 0.035 ± 0.001 min−1 for imidacloprid, k = 0.019 ± 0.001 min−1 for thiamethoxam and k = 0.021 ± 0.000 min−1 for clothianidin. However, the rate of mineralization was low, i.e. 19.1 ± 0.2% for imidacloprid, 14.4 ± 2.9% for thiamethoxam and 14.1 ± 0.4% for clothianidin. This indicates that several transformation products were formed instead. Some of them were observed within HPLC-DAD analyses and structures were proposed according to the liquid chromatography-electro spray ionization tandem mass spectrometry analyses (LC-ESI-MS/MS). The formation of clothianidin, as thiamethoxam transformation product, was reported for the first time.  相似文献   

14.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

15.
Oxidation of bisphenol F (BPF) by manganese dioxide   总被引:1,自引:0,他引:1  
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42− > Cl > NO3 ≈ SO42−, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.  相似文献   

16.
Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NOx) representative of urban conditions, in solardome chambers. Annual mean NOx concentrations ranged from 77 nl l−l to 98 nl l−1, with NO:NO2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.  相似文献   

17.
Nitrogen concentration and δ15N in 175 epilithic moss samples were investigated along four directions from urban to rural sites in Guiyang, SW China. The spatial variations of moss N concentration and δ15N revealed that atmospheric N deposition is dominated by NHx-N from two major sources (urban sewage NH3 and agricultural NH3), the deposition of urban-derived NHx followed a point source pattern characterized by an exponential decline with distance from the urban center, while the agricultural-derived NHx was shown to be a non-point source. The relationship between moss N concentration and distance (y = 1.5e−0.13x + 1.26) indicated that the maximum transporting distance of urban-derived NHx averaged 41 km from the urban center, and it could be determined from the relationship between moss δ15N and distance [y = 2.54 ln(x) − 12.227] that urban-derived NHx was proportionally lower than agricultural-derived NHx in N deposition at sites beyond 17.2 km from the urban center. Consequently, the variation of urban-derived NHx with distance from the urban center could be modeled as y = 56.272e−0.116x − 0.481 in the Guiyang area.  相似文献   

18.
Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining.Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009.The A. nidus fronds that were attached to tree trunks 1-3 m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS.The highest atmospheric mercury concentration, 1.8 × 103 ± 1.6 × 103 ng m−3, was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ng m−3, was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 103 ± 1.6 × 103 ng g−1) than at the remote site (70 ± 30 ng g−1). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r = 0.895, P < 0.001, n = 14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (HgA.nidu/ng g−1) = 0.740 log (HgAir/ng m−3) − 1.324.  相似文献   

19.
The ability of thermal activated peroxydisulfate (PS) of mineralizing phenol at 70 °C from contaminated waters is investigated. Phenol in concentrations of 10−4 to 5 × 10−4 M is quantitatively depleted by 5 × 10−3 to 10−2 M activated PS in 15 min of reaction. However, mineralization of the organic carbon is not observed. Instead, an insoluble phenol polymer-type product is formed. A reaction mechanism including the formation of phenoxyl radicals and validated by computer simulations is proposed. High molecular weight phenolic products are formed by phenoxyl radical H-abstraction reactions. This is not the case for the room temperature degradation of phenol by sulfate radicals where sulfate addition to the aromatic ring mainly leads to the generation of hydroxycyclohexadienyl radicals leading to hydroxybenzenes and oxidized open chain products. Therefore, a change in the reaction mechanism is observed with increasing temperature, and thermal activation of PS at 70 °C does not lead to the mineralization of phenol. Thus PS activation at 70 °C may be considered a potential method to reduce the load of phenol in polluted waters by polymerization.  相似文献   

20.
The gas phase atmospheric degradation of diazinon has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. The rate constant for reaction of diazinon with OH radicals was measured using a conventional relative rate method with di-n-buthylether as reference compound being k = (3.5 ± 1.2) × 10−11 cm3 molecule−1 s−1 at 302 ± 10 K and atmospheric pressure. The available evidence indicates that tropospheric degradation of diazinon is mainly controlled by reaction with OH radicals, and that the tropospheric lifetime with respect to the OH reaction is estimated to be around 4 h whereas its lifetime with respect to the photolysis is higher than 1 d under our conditions. Significant aerosol formation was observed following the reaction of diazinon with OH radicals, and the main carbon-containing products detected in the particle phase were hydroxydiazinon, hydroxydiazoxon and 2-isopropyl-6-methyl-pyrimidinyl-4-ol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号