首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different combinations of treatment techniques, i.e. electrocoagulation combined with microfiltration (EMR), membrane bioreactor (MBR) and electrocoagulation integrated with membrane bioreactor (hybrid MBR, (HMBR)), were analysed and compared for the treatment of tannery wastewater operated for 7 days under the constant trans-membrane pressure of 5 kPa. HMBR was found to be most suitable in performance as well as fouling reduction, with 94 % of chemical oxygen demand (COD) removal, 100 % chromium removal and 8 % improvement in percentage reduction in permeate flux compared to MBR with only 90 % COD removal and 67 % chromium removal. The effect of mixed liquor suspended solids on fouling was also investigated and was found to be insignificant. EMR was capable of elevating the flux but was not as efficient as HMBR and MBR in COD removal. Fouling reduction by HMBR was further confirmed by SEM-EDX and particle size analysis.  相似文献   

2.
本研究旨在探索用电解浮选进行活性污泥固液分离的可行性。研究通过小试试验确定电解浮选进行活性污泥固液分离的适宜工艺条件,在装有Ti/RuO2-IrO2-TiO2阳极、Ti阴极的电解浮选槽中进行了活性污泥固液分离的研究,针对影响电解气浮工艺的4个主要影响因素(水力停留时间、接触室电流密度、分离区电流密度和接触室极板间距)及3个合适的水平进行正交试验。结果表明,分离区电流密度是最主要影响因素。当进水SS浓度为1687 mg/L时,在停留时间为25 min,接触室电流密度为5 mA/cm2,分离区电流密度为4 mA/cm2,极板间距为3 mm的条件下进行电解浮选验证性试验,悬浮固体颗粒物去除率较高,去除率为98.9% ,能耗0.54 kWh/m3。  相似文献   

3.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

4.
采用混凝剂对皮革废水进行混凝处理。对3种无机混凝剂和一种有机混凝剂进行了筛选,研究了pH值和投药量对废水中SS、COD、铬和色度等污染物去除效果的影响。结果表明,当pH值在酸性和中性时,效果不明显;当pH值为碱性时,效果显著。硫酸亚铁、硫酸亚铁+PAM和聚合氯化铝(PAC)+PAM 3种混凝剂组合具有良好的混凝效果,在合适的pH值和投药量下,SS和COD的去除率分别达到80%和30%以上,铬和色度的去除率分别达到95%和50%以上。且硫酸亚铁混凝效果好,成本低,适合小型皮革企业需求。  相似文献   

5.
The main objective of this study was to investigate the feasibility of coagulation as a post-treatment method of anaerobically treated primary municipal wastewater. Both mesophilic and ambient (20 degrees C) temperature conditions were investigated in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor. In addition, optimization of the coagulant, both in terms of type and dose, was performed. Finally, phosphorus removal by means of aluminum and iron coagulation and phosphorus and ammonia nitrogen removal by means of struvite precipitation were studied. Anaerobic treatment of primary effluent at low hydraulic retention times (less than 15 hours) resulted in mean chemical oxygen demand (COD) removals ranging from 50 to 70%, while, based on the filtered treated effluent, the mean removals increased to 65 to 80%. Alum coagulation of the UASB effluent gave suspended solids removals ranging from approximately 35 to 65%. Turbidity removal reached up to 80%. Remaining COD values after coagulation and settling were below 100 mg/L, while remaining total organic carbon (TOC) levels were below 50 mg/L. Filterable COD levels were generally below 60 mg/L, while filterable TOC levels were below 40 mg/L. All coagulants tested, including prepolymerized aluminum and iron coagulants, demonstrated similar efficiency compared with alum for the removal of suspended solids, COD, and TOC. Regarding struvite precipitation, optimal conditions for phosphorus and nitrogen removal were pH 10 and molar ratio of magnesium: ammonia-nitrogen: phosphate-phosphorus close to the stoichiometric ratio (1:1:1). During struvite precipitation, removal of suspended solids reached 40%, while turbidity removal reached values up to 80%. The removal of COD was approximately 30 to 35%; yet, when removal of organic matter was based on the treated filterable COD, the removal increased to approximately 65%. In addition, nitrogen was removed by approximately 70%, while phosphorus removal ranged between approximately 30 and 45% on the basis of the initial phosphorus concentration. Finally, size fractionation of the organic matter (COD) showed that the various treatment methods were capable of removing different fractions of the organic matter.  相似文献   

6.
Textile plant wastewater being treated in a facultative pond system had too high of a solids concentration to be reused in the dying and rinsing processes. Electrocoagulation was evaluated to further treat the pond effluent to remove turbidity, which was caused by dyes and microorganisms. A range of amperages were tested for removal of turbidity and chemical oxygen demand (COD). Electrocoagulation lowered the turbidity from 1400 NTU to below 50 NTU; and COD was lowered from 550 mg/L to approximately 250 mg/L, which was acceptable for reuse. In addition, a laboratory-scale sedimentation study was conducted on the electrocoagulated pond effluent, which indicated that a settling time of 35 minutes would provide for 80% removal of suspended solids, which was acceptable for reuse of the water in plant processes.  相似文献   

7.
Improvement of upflow anaerobic sludge bed performance using chitosan.   总被引:1,自引:0,他引:1  
Chitosan, with a degree of deacetylation of 85% and a molecular weight of 2.5 x 10(5) Da, yielding high flocculation efficiency (85 to 100% flocculation) and a broad flocculation region (2 to 45 mg/g suspended solids), was selected for accelerating granulation in a 30-L upflow anaerobic sludge bed (UASB) used to treat wastewater from a tropical fruit-processing industry. Compared with other studies, smaller amounts of chitosan were applied (two injections with 2 mg chitosan/g suspended solids in the reactor at each injection). Comparison with the UASB without chitosan addition, the UASB had a 24 to 37% larger particle size and a 6 to 41% longer solids retention time. In addition, the reactor performances were also enhanced. The UASB with chitosan addition had a 9 to 59% lower effluent chemical oxygen demand (COD), 4 to 10% higher COD removal, up to 35% higher biogas production rate, and a 16 to 68% lower biomass washout. The paired t-test analysis indicated that these performance parameters were significantly different (P < 0.05).  相似文献   

8.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A (.)(m-2) resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

9.
Detoxification of tannery waste liquors with an electrolysis system   总被引:7,自引:0,他引:7  
This paper describes an electrochemical treatment and detoxification of tannery waste liquors (TWL). In this technique, TWL was passed through an electrolytic cell using a Ti/Pt anode and a stainless steel 304 cathode. Owing to the strong oxidizing potential of the chemicals produced (chlorine, oxygen, hydroxyl radicals and other oxidants) the organic and inorganic pollutants (ammonia, sulfides and chromium) were wet oxidized to carbon dioxide, nitrogen oxides and sulfur dioxide. In addition, chromium was precipitated as Cr(2)(SO(4))(3). Experiments were run in a batch, laboratory-scale, pilot-plant, and the results are reported herein. After 30 min and 3 h of electrolysis at 0.26 A cm(-2), 45 degrees C and pH 9, total chemical oxygen demand (COD) was reduced by 52 and 83% and biochemical oxygen demand (BOD(5)) was reduced by 35 and 66%, respectively. Additionally, total suspended solids (TSS) were reduced by 8.6 and 26%, total phenolic compounds were reduced by 95.6 and 99.4%. Ammonia, sulfides and soluble chromium were reduced by 100% in both cases, while the mean anode efficiency was 81 g h(-1) A(-1) m(-2) and 1.9 g h(-1) A(-1) m(-2). Also, the mean energy consumption was 4.8 kwh kg(-1) of COD reduced and 200 kwh kg(-1) of COD reduced for 0.5 and 3 h, respectively. These results strongly indicate that this electrolytic method of total oxidation of TWL cannot be cost effective for wide use. However, it can be used as an effective pretreatment stage for detoxification of the wastewater, owing to great efficiency especially with respect to COD and toxicity (phenolics) reduction.  相似文献   

10.
The successful application of electrochemical technology, employing a dimensionally stable anode (DSA((R))), for the remediation of wastewater from the oil extraction industry has been demonstrated. Samples from the oil-water separation box of an effluent treatment plant were submitted to voltammetry, chronoamperometry and electrolysis studies using a DSA anode of nominal composition Ti/Ru(0.34)Ti(0.66)O(2). Electrolysis of the oily wastewater lead to a time-dependent reduction in chemical oxygen demand (COD) in the sample that could be attributed to: (i) the direct oxidation of oil components at the electrode, by the metal oxide itself or by OH() radicals available at the electrode surface, (ii) the indirect oxidation of oil components by intermediate oxidising agents formed in parallel reactions (ex. ClO(-)), and (iii) the aggregation of suspended oil droplets by electroflotation. The largest reduction (57%) in COD was obtained following electrolysis of an oily sample for 70 h at 50 degrees C with a current density of 100 mA cm(-2). The stability of DSA electrodes for use in oily wastewater remediation has been assessed.  相似文献   

11.
双波长紫外吸收法有机废水COD测量技术与仪器设计   总被引:1,自引:0,他引:1  
紫外吸收法直接测定有机废水COD是一种无需化学试剂、无样品前处理、无二次污染的绿色无损检测技术,但在实际应用中发现,有机废水中的悬浮物对测量结果产生较大影响.以实际废水水样为例,详细阐述了双波长紫外吸收法测量有机废水COD的操作方法及其消除悬浮物干扰的原理,并介绍了运用该技术设计开发的COD在线测量仪器.该仪器采用嵌入式计算机系统实时采集和处理数据,根据实际废水在双波长测量条件下的有效紫外吸光度快速推算出其COD值,具有快速、准确、无污染的特点.  相似文献   

12.
This study investigates the effect of dispersed microorganisms and exocellular polymeric substances on biomass dewaterability. Specific resistance to filtration (SRF) was measured for biomass from a membrane bioreactor and a completely mixed activated sludge system. Both laboratory-scale reactors were fed with synthetic wastewater and operated at a high food-to-microorganism ratio (F/M) (1 to 11 kilograms chemical oxygen demand per kilogram mixed liquor volatile suspended solids per day [kgCOD/(kg MLVSS.d)]) and short solids retention times (0.25 to 5 d). The SRF values were affected by strong interactions of three parameters: (1) the mixed liquor suspended solids concentration, (2) the amount of dispersed microorganisms, and (3) the exocellular polymeric substances (EPS) concentration. At F/M smaller than 2 kg COD/(kg MLSS.d) and mixed liquor suspended solids (MLSS) concentration higher than 2000 mg/L, increasing amount of dispersed microorganisms in the biomass yielded higher SRF values. However, at high F/M (> 5 kg COD/kg MLSS.d) and low MLSS concentrations (< 600 mg/L), lower EPS concentrations resulted in slightly smaller SRF values, even though the amount of dispersed microorganisms in the biomass was much higher. Thus, at low MLSS concentrations, EPS concentrations rather than the amount of dispersed microorganisms tend to control SRF.  相似文献   

13.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A . m?2 resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

14.
In this study, a detailed wastewater profile and treatability studies of Demirtas Organized Industrial District (OID) were undertaken on a pilot-scale. The industrial categorisation of Demirtas OID was determined, and the wastewater characterisations of each industrial sector were analysed and the flow-rates were measured. The results were used to design a wastewater treatment plant for Demirtas OID. Pilot-scale chemical and biological treatability studies were carried out. The steady-state performance of the pilot-scale treatment system in removing chemical oxygen demand (COD) and suspended solids (SS) was studied for a period of three months. The removal efficiencies obtained in this study were 42% of COD and 67% of SS in the chemical treatment, and 84% of COD and 25% of SS in the biological treatment. The overall removal efficiency of the pilot-scale system was 91% COD and 75% SS. The pilot-scale study showed that the wastewater from Demirtas OID could be treated with biological and chemical methods, and the treated wastewater met the Regulation of Discharge Standards of Turkey. The significance of this study is that it is the first such system in Turkey to be tested on a pilot scale.  相似文献   

15.
Methane production from the soluble fraction of distillers' dried grains with solubles, a co-product of ethanol production, was studied in 2-L anaerobic sequencing batch reactors (ASBRs) under 10 different operating conditions. Methane production and chemical oxygen demand (COD) removal were quantified for a wide range of operating parameters. Chemical oxygen demand removals of 64 to 95% were achieved at organic loading rates ranging from 1.5 to 22.2 g COD/L x d, solids retention times from 8 to 40 days, and food-to-microorganism ratios ranging from 0.4 to 1.9 g COD/g volatile suspended solids (VSS) x d. Biogas methane content varied from 61 to 74%, with 0.29 L CH4 produced/g COD removed. Roughly 56% of the influent COD and 84% of the COD removed in the ASBRs was converted to methane. Microbial yield (Y) and decay (b) constants were determined to be Y = 0.126 g VSS/g COD removed and b = 0.032 day(-1), respectively. Methane produced from co-products can reduce the costs and fossil-fuel consumption of ethanol manufacture.  相似文献   

16.
膜生物反应器(MBR)是一种高效的污水处理工艺,而微生物燃料电池(MFC)能利用NO-3作为电子受体进行脱氮。为解决膜生物反应器(MBR)脱氮效率低和膜污染问题,建立了一套能够进行脱氮、有效抑制膜污染的一体式MFC-好氧MBR新工艺。以开路MFC-MBR反应器为对照,对耦合系统中污水处理效果、膜污染情况进行研究。研究表明,2套系统的COD去除率均超过88%,对NH4-N的去除均达到99%。闭路MFC-MBR系统TN去除率达到69.4%,高于开路系统的55.3%。混合液的MLVSS/MLSS稳定在88%左右,同时耦合系统能够改善污泥混合液的性质,zeta电位的绝对值和粘度较开路系统有所减少,污泥颗粒平均体积粒径(233.482μm)较开路系统(94.877μm)有明显增加,膜清洗周期延长了41.17%。  相似文献   

17.
Lai CL  Lin SH 《Chemosphere》2004,54(3):235-242
Treatment of copper chemical mechanical polishing (CMP) wastewater from a semiconductor plant by electrocoagulation is investigated. The CMP wastewater was characterized by high suspended solids (SS) content, high turbidity (NTU), chemical oxygen demand (COD) concentration up to 500 mgl(-1) and copper concentration up to 100 mgl(-1). In the present study, electrocoagulation was employed to treat the CMP wastewater with an attempt to simultaneously lower its turbidity, copper and COD concentrations. The test results indicated that electrocoagulation with Al/Fe electrode pair was very efficient and able to achieve 99% copper ion and 96.5% turbidity removal in less than 30 min. The COD removal obtained in the treatment was better than 85%, with an effluent COD below 100 mgl(-1). The effluent wastewater was very clear and its quality exceeded the direct discharge standard. In addition, sludge settling velocities after electrocoagulation were measured and the data were employed to verify the empirical sludge settling velocity models. Finally, the sludge settling characteristic data were also utilized to establish the relation between the solids flux (G) and the initial solids concentration.  相似文献   

18.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   

19.
A pilot submerged membrane bioreactor coupled with biological nutrient removal was used to treat the primary effluent at a municipal wastewater treatment plant. Long-term experiments were conducted by varying hydraulic retention time from 6 to 8 hours and solids retention time from 20 to 50 days, respectively. The performance was assessed by monitoring key wastewater parameters, including chemical oxygen demand (COD), nitrogen, and phosphorus concentration in individual anoxic, anaerobic, aerobic, and membrane separation zones. Results showed that the tested system can consistently achieve COD, nitrogen, and phosphorus removal efficiencies at 80 to 98%, 70 to 93%, and 89 to 98%, respectively. Effluent COD remained low as a result of efficient solid retention, even though there was great variation in influent quality. However, total nitrogen increased proportionally with influent concentration. At a 50-day solids retention time, higher COD and nitrogen oxides specific utilization rates in the anoxic zone resulted in a high production of nitrogen oxides in the subsequent aerobic zone.  相似文献   

20.
膜生物反应器(MBR)是一种高效的污水处理工艺,而微生物燃料电池(MFC)能有效降解污泥中的胞外生物有机质(EBOM)并回收电能.将MFC与MBR联用,建立了一套能够有效抑制膜污染同时回收电能的新系统——MFC-MBR耦合系统,MBR的剩余污泥经MFC处理后回流.以传统MBR为对照,对耦合系统中污水处理效果、膜污染情况和污泥混合液的性质进行研究.研究表明,耦合系统的污水处理效果没有明显恶化,COD去除率为94%,NH4+-N的去除率为92%.耦合系统能够有效减缓膜污染的发生,清洗周期延长了28%.污泥混合液的MLVSS/MLSS稳定在80% ~ 88%,系统内几乎没有无机颗粒积累.松散结合态胞外聚合物(LB-EPS)降低了48%,使污泥混合液性质得到改善.较低的污泥比阻(2.69×1012m/kg)和标准化毛细吸水时间(1.67 s·L/g MLSS),证明耦合系统污泥混合液脱水性能提高了.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号