首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.  相似文献   

2.
Three types of farm waste (cattle slurry, dirty water and farm yard manure (FYM)) were applied to hydrologically isolated grassland plots on a sloping poorly draining soil. Two applications were made, the first in October and the second in February. Application rates were 50 m(3) ha(-1) of slurry and dirty water and 50 t ha(-1) of FYM. Volumes of run-off following rainfall events and concentrations of N, P and K in run-off were measured. Losses of nutrients were higher following applications made with the soil at field capacity and rainfall soon after application. In terms of percentage loss of applied nutrients, losses were generally low. Concentration of N in run-off from the dirty water and FYM treated plots following the first application and the slurry treated plots following the second application exceeded 11.3 mg dm(-3) (a recommended limit for drinking water) although the maximum concentration recorded was 15 mg dm(-3) following FYM application. Concentration of P in run-off only exceeded 1 mg dm(-3) following the second application of cattle slurry. Concentration of K exceeded 10 mg dm(-3) following the first application of FYM and the second application of cattle slurry.  相似文献   

3.
Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0?±?0.59 mm h?1. Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8 % Al2O3) applied at a rate of 0.88:1 [Al/ total phosphorus (TP)], (2) commercial-grade liquid ferric chloride (38 % FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p?<?0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry.  相似文献   

4.
In four field experiments, carried out in The Netherlands, small wind-tunnels were used to make direct measurements of ammonia (NH(3)) volatilization from different types of slurry and manure applied to the surface of grassland. During periods of up to six days following application, losses of NH(3)-N often amounted to more than 40% of the NH(4)-N applied. Percentage loss was highest (83%) from a poultry slurry and least (21%) from an air-dried poultry manure. Losses of NH(3)-N were generally greater from pig slurry (36-78%) than from cattle slurry (41%). In most cases 80% or more of the total NH(3)-N loss occurred within 48 h of application. Estimates were made of total annual NH(3) emissions from four systems of poultry housing. The highest total loss (50% of the N voided in droppings) occurred with a battery house producing a slurry with a low content of dry-matter; most of the loss took place after spreading. With a second battery house, in which the droppings were air-dried, the total loss was only 12%, with much lower emissions from the housing and during spreading.  相似文献   

5.
Ammonia volatilization from livestock manure is one of the most important pathways of nitrogen loss from agricultural cultivated fields. In this paper, we report the measurement of ammonia emission from cattle slurry manure applied to upland in Miyazaki, Japan. It has been determined that after the cattle slurry was sprayed on the upland surface, the emission flux of the first day was 110 microg N ha(-1) s(-1). The loss of NH4(+) -N in the applied slurry was 60% after 5 days following the spraying of cattle slurry.  相似文献   

6.
Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.  相似文献   

7.
Anderson R  Wu Y 《Chemosphere》2001,42(2):161-170
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment. Control plots were treated with mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1). Slurry treatment plots were in two blocks and treated with either pig or cow slurry supplied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on 10-cm soil cores were compared with measured P quantity/intensity (Q/I) parameters from fitted sorption and desorption isotherms. Phosphorus affinity constant was found to be significantly and negatively correlated with P loading of soils. Desorption rate coefficient also increased significantly with increase in P loading from slurry, although there was no significant difference between slurry types (cow vs. pig). In contrast, while agronomic measures of P (water-soluble P, Olsen P, calcium chloride-extractable P, degree of P saturation (DPS)) also correlated significantly with P loading and total P (TP) in the soils, there was a separation and significant differences between the cow and pig slurry treatment blocks, with the former being much lower. Phosphorus inputs to pig slurry treated plots were much higher than to equivalent cow slurry plots over the first 15 years of the study but declined sharply over the most recent 10 years to more or less par. Conventional measures of agronomic P such as Olsen P and DPS, measure only P accumulation over the longer term and indicated only the higher content of P accumulating in soil of pig slurry treatments. Risk of P loss estimated by Q/I parameters appeared to show very similar behaviour between the two slurry types in line with more recent manurial additions but in contradiction of P accumulation statistics.  相似文献   

8.
The effects of manure-application mode, rate to soil, and rainfall characteristics on the quality of agricultural runoff water have been assessed by means of the algal-growth-potential test (AGPT) and chemical analyses. This study used two modes of manure application (i.e. surface mode and incorporation mode), three manure-application rates (0, 150, 300 kg N ha(-1)), and two rainfall intensities and times (i.e. 11 mm h(-1) for 142 min and 22 mm h(-1) for 71 min). The effects of the dilution of runoff water on algal growth were also examined. The algal yields obtained with runoff from soil with the incorporated manure mode are similar to those from soil without manure application and are lower than those with the surface mode of manure application. A higher manure-application rate increases the load of nutrients in the runoff and subsequently the algal yield. The dilution of runoff water can stimulate or limit the algal growth, depending on the concentration of toxicants, N (nitrogen) and P (phosphorus) from runoff and in the aquatic diluting medium. A lower rainfall intensity plus a longer rainfall time increases algal productivity. This study showed that N is the limiting factor to algal growth at low dilution but that, at high dilution or with the incorporation mode of manure application, P becomes the limiting factor to algal growth.  相似文献   

9.
Effects of two "enhanced" treatments (drying and composting mesophilic anaerobically digested (MAD) biosolid) on nutrient leaching were investigated. Repacked sandy or sandy loam textured soil cores amended with fresh, dried and composted MAD biosolid (250 kg N ha(-1)), were investigated under steady-state hydrological conditions. Two 24 h, 4.5 mm h(-1) rainfall events, with a 14-day interval, were simulated using water-tracers. Losses of nitrate from the sandy loam soil during rainfall event 1 (43.9-68.0 mg kg(-1)) were significantly greater (P < or = 0.05) than during event 2 (6.4-11.9 mg kg(-1)). Phosphate losses were significantly greater (P < or = 0.05) during event 2 (up to 0.30 mg kg(-1)) compared to the first (< 0.05 mg kg(-1)). The sand soil showed similar effects. Losses of nitrate-N (percentage of total N applied) from the sand soil were small (around 0.06% for fresh/dried and 0.63% for composted MAD biosolids). Losses of nitrate-N from the sandy loam soil were greater; 4% for fresh and dried and 3% for composted MAD biosolids. This research showed that drying MAD biosolid had little impact on nitrate and phosphate losses from soil compared to fresh MAD biosolid. The effect of composting MAD biosolid on nutrient losses was more variable.  相似文献   

10.
The hydrometer method to measure manure specific gravity and subsequently relate it to manure nutrient contents was examined in this study. It was found that this method might be improved in estimation accuracy if only manure from a single growth stage of pigs was used (e.g., nursery pig manure used here). The total solids (TS) content of the test manure was well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.9944 and 0.9873, respectively. Also observed were good linear correlations between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.9836 and 0.9843, respectively). These correlations were much better than those reported by past researchers, in which lumped data for pigs at different growing stages were used. It may therefore be inferred that developing different linear equations for pigs at different ages should improve the accuracy in manure nutrient estimation using a hydrometer. Also, the error of using the hydrometer method to estimate manure TN and TP was found to increase, from +/- 10% to +/- 50%, with the decrease in TN (from 700 ppm to 100 ppm) and TP (from 130 ppm to 30 ppm) concentrations in the manure. The estimation errors for TN and TP may be larger than 50% if the total solids content is below 0.5%. In addition, the rapid settling of solids has long been considered characteristic of swine manure; however, in this study, the solids settling property appeared to be quite poor for nursery pig manure in that no conspicuous settling occurred after the manure was left statically for 5 hours. This information has not been reported elsewhere in the literature and may need further research to verify.  相似文献   

11.
This paper reports a desk study to quantify the total-nitrogen (N) and ammoniacal-N contents of livestock excreta, and to compare them with estimates of N losses to the environment from that excreta. Inventories of ammonia (NH3), nitrous oxide (N2O), dinitrogen (N2), and nitric oxide emissions (NO), together with estimates of nitrate (NO3-) leaching and crop N uptake were collated. A balance sheet was constructed to determine whether our estimates of N in livestock excreta were consistent with current estimates of N losses and crop N uptake from that N, or whether emissions of N compounds from livestock excreta may have been underestimated. Total N excretion by livestock in England and Wales (E&W) was estimated as 767-816 x 10(3) t of which 487-518 x 10(3) t was estimated to be total ammoniacal-N (TAN). Estimates of NH3 and N2O losses during housing and storage were derived from the difference between the total amount of TAN in excreta deposited in and around buildings, and the total amount of TAN in manure (i.e. the excreta deposited in and around buildings after collection and storage) prior to spreading and were ca. 64-88 x 10(3) t. The NH3-N emission from livestock buildings and manure storage in E&W quoted in the UK Emission Inventory (Pain et al., 1999. Inventory of Ammonia Emission from UK Agriculture, 1977. Report of MAFF contract WAO630, IGER, North Wyke) is ca. 80 x 10(3) t. Losses from NO3- leaching in the season after manure application and grazing were estimated as 73 and 32 x 10(3) t, respectively. Other gaseous losses of N were estimated as ca. 54 x 10(3) t. Crop uptake of manure N was estimated to be between 7 and 24 x 10(3) t. For manures, estimated N losses, immobilization and crop uptake total 326 x 10(3) t compared with estimates of 293-319 x 10(3) t TAN in excreta. Total N losses and crop uptake from TAN deposited at grazing were estimated to be 179-199 x 10(3) t compared with ca. 224 x 10(3) t TAN excreted. Thus all the TAN in manures appears to be accounted for, but ca. 25-45 x 10(3) t of TAN in urine deposited at grazing were not, and could be an underestimated source of gaseous emission or nitrate leaching.  相似文献   

12.
Boron (B) availability to crop plants depends on soil properties as well as management practices like liming, fertilization and use of organic manures. To assess the effect of farmyard manure (FYM) application on availability of added B, adsorption-desorption of B was investigated in five different soils receiving varying doses of FYM (0, 5 and 10 g FYM kg(-1) soil). Two surfaces Freundlich model was found best to account for B adsorption-desorption data of all soils. Application of FYM increased B adsorption capacities pertaining to low (K1) and high (K2) concentration ranges in all soils, except Soil C (Alfisol) having a pH of 9.8, in which the higher rate of FYM decreased the value of K2. Application of FYM did not change B desorption capacities of soils corresponding to low B concentration range (K(1)(1)) significantly, however, it increased B desorption capacity pertaining to high B concentration (K(1)(2)) in all soils, except Soils C (Alfisol) and E (Entisol) having pH of 9.8 and 5.1, respectively. Application of FYM increased the desorption slope factor applicable to low concentration range (1/n(1)(1)) in Soil A (Inceptisol), but decreased it in Soil E (Entisol). The 1/n(1)(2) (desorption slope factor applicable to high concentration range) decreased with FYM application in all soils except Soil E (Entisol), where it was increased. Boron desorption index (slope(ads)/slope(des)) decreased with FYM application in low B concentration range, but increased in high concentration range for all soils except soil E (Entisol, pH 5.1), in which a reverse trend was observed. Application of FYM increased the retention of added B in soils and may help reducing the leaching losses.  相似文献   

13.
Zhang HC  Cao ZH  Shen QR  Wong MH 《Chemosphere》2003,50(6):695-701
A field plot study was conducted on two types of paddy soils in the Taihu Lake Region, during the rice season of year 2000 in order to assess phosphorus (P) losses by runoff and vertical leaching, which are considered the two main pathways of P movement from paddy soil into its surrounding water course. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg applied P ha m(-2). The experiments consisted of three replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5 x 6 m2 in a randomized block. Results revealed that the average concentration range for total P (TP) in runoff was 1.857-7.883, 1.038-5.209, 0.783-1.255 and 0.572-0.691 mg P l(-1) respectively for P300, P150, P30 and P0 in Anzhen, while it was 2.431-2.449, 1.578-1.890, 1.050-1.315 and 0.749-0.941 mg P l(-1) respectively in Changshu. In all treatments, particulate P (PP) represented a major portion of the TP lost in runoff, it was 80% in Anzhen, and it was even more (>90%) in Changshu. Phosphate fertilizer treatments significantly affected P concentrations and P loads in the runoff. The mean concentration and average seasonal TP load from the P150 plots were 1.809 mg P l(-1) and 395 g P ha m(-2) season(-1) respectively, and lower than that from the P300 plots (2.957 mg P l(-1) and 652 g P ha m(-2) season(-1)). These were obviously higher than from the P30 (0.761 mg P l(-1) and 221 g P ha m(-2) season(-1)) and P0 (0.484 mg P l(-1) and 146 g P ha m(-2) season(-1)) respectively. There was no significant difference found between the P30 and the P0 in both sites. Under usual P application rate, there were total 31.7 and 20.6 tones P removed by runoff from permeable (Anzhen site) and waterlogged (Changshu site) paddy soils in the southern Jiangsu region (major part of the TLR) in the rice season of the year 2000. But if the P application rate is unusual high, or the Olsen P in soil accumulates to above a certain level, then this could sharply increase in the future. The average concentration of molybdate reactive phosphorus (MRP) in the vertical leachate from the four different P treatments ranged from 0.058 to 0.304 mg P l(-1) in Anzhen and from 0.048 to 0.394 mg P l(-1) in Changshu. P application rate significantly affected the MRP concentration at each depth in both sites, except for the 90 cm in Anzhen. The average MRP loads during the rice season moved by vertical leaching from the four treatments ranged from 163 to 855 g P ha m(-2) season(-1) in Anzhen and 208-1,825 g P ha m(-2) season(-1) in Changshu. Vertical leachate movement does not necessarily mean that it moves towards surface water and contaminate the watercourses in this flat plain paddy soil region, it does, however, imply that P can move down from surface layers of soil to deeper levels.  相似文献   

14.
Anderson R  Xia L 《Chemosphere》2001,42(2):171-178
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.  相似文献   

15.
Wang K  Zhang Z  Zhu Y  Wang G  Shi D  Christie P 《Chemosphere》2001,42(2):209-214
A long-term randomised block field experiment was established in 1997 to study the dynamics of total P and dissolved P in the surface waters of rice fields receiving two application rates of fertiliser P and one rate of combined fertiliser and manure P. Preliminary results from the first two crops show that concentrations of both total P and dissolved P in the surface waters increased significantly following P application, especially during the first 2 weeks after application. P concentrations subsequently declined sharply within about 10 days, then declined steadily and remained almost constant from about 1 month after application. The initial increase in P concentration of surface waters was higher with increasing rate of fertiliser P, and the P concentration at the highest fertiliser rate peaked within about 1 week of application. The elevated P concentrations following fertiliser P application declined more rapidly than those following the combined application of fertiliser and manure P. When fertiliser and manure P were applied together, about 7 days later the surface water P concentrations were significantly higher than when the same rate of P (or double) was applied as fertiliser only. Disturbance of the surface soil by hand harrowing further increased the P concentrations in surface waters, with a subsequent decline to a steady value after about 1 week. Application of P fertiliser to the high P status soil in this experiment gave no crop yield response and may have increased the risk of pollution of adjacent surface waters through drainage from heavy rainfall events during the rice growing season. Therefore, fertiliser P should not be applied to such soils. If, however, fertiliser or manure P is applied, the application should be made during the dry winter to reduce P losses. Manure should be applied with particular care because of the higher risk of P losses to surface water arising from the relatively long period of high P concentrations in surface waters and the potential for greater release of P to field surface waters from the soil. Hand harrowing should also be avoided during wet weather to protect water quality.  相似文献   

16.
Blackwell PA  Kay P  Boxall AB 《Chemosphere》2007,67(2):292-299
The environmental fate of the antibiotics sulfachloropyridazine and oxytetracycline was investigated in a sandy loam soil. Liquid pig manure was fortified with the compounds and then applied to soil plots to investigate leaching, dissipation and surface run-off under field conditions. Additionally, as the macrolide antibiotic tylosin had been administered to the pigs from which the slurry had been sourced, this was also analysed for in the samples collected. Sulfachloropyridazine dissipated rapidly with DT(50) and DT(90) values of 3.5 and 18.9 days but oxytetracycline was more persistent with DT(50) and DT(90) values of 21.7 and 98.3 days. Both sulfachloropyridazine and oxytetracyline were detected in surface run-off samples at maximum concentrations of 25.9 and 0.9microg/l respectively but only sulfachloropyridazine was detected in soil water samples at a maximum concentration of 0.78microg/l at 40cm depth 20 days after treatment. Tylosin was not detected in any soil or water samples. The results indicated that tylosin, when applied in slurry, posed very little risk of accumulating in soil or contaminating ground or surface water. However, tylosin may pose a risk if used to treat animals on pasture and risks arising from transformation products of tylosin, formed during slurry storage, cannot be ruled out. Oxytetracycline posed a very low risk of ground or surface water contamination but had the potential to persist in soils and sulfachloropyridazine posed a moderate risk of contaminating ground or surface water but had low potential to accumulate in soils. These findings were consistent with the sorption and persistence characteristics of the compounds and support a number of broad-scale monitoring studies that have measured these antibiotic classes in the environment.  相似文献   

17.
18.
Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P < 0.05) with increasing soil organic carbon content (SOC) and with an increasing annual rate of beef cattle manure. The 17β-estradiol mineralization half-life was significantly negatively correlated, and the total amount of 17β-estradiol mineralized at 90 days (MAX) was significantly positively correlated with 17β-estradiol sorption. The long-term rate of manure application had no significant effect on MAX, but the addition of fresh beef cattle manure in the laboratory resulted in significantly (P < 0.05) smaller MAX values. None of the treatments showed MAX values exceeding one-third of the 17β-estradiol applied.  相似文献   

19.
Marc I. Stutter 《Ambio》2015,44(2):207-216
Concerns about the sustainability of inorganic fertilizers necessitate the characterization of alternative P source materials for agronomic P-efficiencies and P losses via leaching. Firstly, this study examined nutrient compositions including P speciation of seven soil amendments: sewage sludge (SS), anaerobic digestate (AD), green compost (GC), food waste compost (FWC), chicken manure (CM), biochar, and seaweed. Secondly, soil P leaching and availability was studied on a subset of four materials (SS, AD, GC, and CM). Sorption of extracts onto columns of a test soil showed strong P retention for SS and compost, but weak P sorption for CM and especially AD, suggesting short-term leaching risks for soil applied AD. Limited P desorption with water or citrate indicated sorbed P was strongly fixed, potentially limiting crop availability. These data indicate that variation in P forms and environmental behavior should be understood to maximize P usage, but minimize leaching and soil P accumulation. Hence, different alternative P source materials need differing recommendations for their agronomic management.  相似文献   

20.
Sorption of tylosin onto swine manure   总被引:2,自引:0,他引:2  
Kolz AC  Ong SK  Moorman TB 《Chemosphere》2005,60(2):284-289
Sorption of tylosin was conducted on manure solids (<2 mm) and colloidal materials (<1.2 microm) collected from open (OL) and covered (CL) anaerobic swine manure lagoons. The aqueous concentration of tylosin in the sorption studies bracket the levels expected in lagoons, between 1 mgl(-1) and 30 mgl(-1). Sorption isotherms were found to be slightly non-linear for 2 mm solids, with Freundlich distribution coefficients (K(f)) of 39.4 with n=1.32 for CL slurry and 99.5 with n=1.02 for OL. These values are comparable to those reported for loam soils, but higher than those reported for sandy or clay soils and lower than those reported for fresh manure. Normalization of K(d) to the organic carbon content of the solids gave K(oc) values of 570 lkg(-1) and 818 lkg(-1), for CL and OL solids, respectively. The K(d) and K(f) values were not significantly different between colloids and 2 mm solids in OL slurry, but were significantly different in CL due to the non-linearity of the colloid isotherm. Based on the K(d) values obtained and comparing the K(d) values of other antibiotics, tylosin is strongly sorbed to manure, and would be more mobile than tetracyclines, but less mobile than sulfonamides, olaquindox, and chloramphenicol. However, tylosin mobility may be facilitated through transport with colloidal manure materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号