首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
超声/Fenton联用技术处理垃圾渗滤液中的有机物   总被引:7,自引:2,他引:5  
详细研究了超声/Fenton联用技术对垃圾渗滤液中有机物的处理效果.研究内容包括:超声波频率对垃圾渗滤液色度和COD去除率的影响,超声波功率对垃圾渗滤液色度和COD去除率的影响以及Fenton试剂用量和pH值对垃圾渗滤液色度去除率和COD去除率的影响.还利用一次正交回归实验确定了超声/Fenton联用技术处理垃圾渗滤液的优化条件,并在优化条件的基础上,对超声波技术、Fenton高级氧化技术和超声/Fenton联用技术对垃圾渗滤液的处理效果进行比较研究.研究结果表明:超声/Fenton联用技术对垃圾渗滤液的色度去除率和COD去除率最高,其色度去除率接近100%,COD去除率达到73.5%.超声/Fenton联用技术处理垃圾渗滤液的优化条件是:超声频率为28 kHz,超声功率为75W,Fe2 浓度为280 mg/L,H2O2浓度为1.29×104 mg/L,pH值为2.5.超声波的频率、功率和Fenton试剂用量之间存在优化匹配值.  相似文献   

2.
用混凝沉淀-Fenton-NaClO氧化联合深度处理垃圾渗滤液,利用单因素变量法得出:混凝实验在PFS投加量为1.2g/L、pH=6、搅拌时间为30min的条件下进行,COD、氨氮和色度的去除率分别达到56.60%、15.62%和56.52%;混凝出水在初始pH为4、H2O2投加量为80mmol/L、n(H2O2)∶n(F2+)比为1∶1、反应时间为60min的条件下进行Fenton氧化,COD、氨氮和色度的去除率分别达到71.38%、21.43%和95.24%;Fenton氧化出水在pH为6、NaClO投加量为60mmol/L、反应时间为60min的条件下进行NaClO氧化,COD和氨氮去除率分别为83.42%和99.57%;联合工艺COD、氨氮和色度去除率分别为96.68%、99.69%和98.04%,出水浓度分别为63mg/L、0.47mg/L和18倍,均可满足《生活垃圾填埋污染控制标准(GB16889-2008)》中规定的排放标准。  相似文献   

3.
对比研究了UV/Fenton法、UV/H2O2法和Fenton法对垃圾渗滤液的处理特性。结果表明,3种高级氧化技术最佳处理条件为:反应温度25℃、反应时间60min、初始pH 4.0、H2O2初始质量浓度为4 000mg/L,且UV/Fenton法和Fenton法的Fe(Ⅱ)用量均为25 mg/L。在该最佳处理条件下,UV/Fenton法、UV/H2O2法及Fenton法对垃圾渗滤液COD的去除率分别为49.9%、39.8%和38.0%,处理后垃圾渗滤液的可生化性大幅度提高。因此,UV/Fenton法、UV/H2O2法和Fenton法是极具应用前景的垃圾渗滤液预处理技术。  相似文献   

4.
Fenton法处理垃圾渗滤液的参数优化及反应动力学模型   总被引:1,自引:0,他引:1  
采用Fenton法处理垃圾渗滤液,研究反应时间、初始浓度、pH、Fenton试剂用量对垃圾渗滤液TOC去除率的影响。研究结果表明,最优反应条件是反应时间30 min,初始pH为3.0,初始[H2O2]0=7 310 mg/L,最佳[H2O2]/[Fe2+]摩尔比为5,反应温度为室温,此时渗滤液的TOC去除率达到70.3%。渗滤液矿化过程符合一级反应动力学,并建立了符合该渗滤液的反应动力学模型。  相似文献   

5.
针对上海老港垃圾填埋场经过厌氧-曝气塘处理后的渗滤液难进一步处理的问题,对其采用厌氧滤池-好氧接触法、氧化钙2种方式预处理,在此预处理基础上,考察了Fenton法深度处理的效果,探讨了H2O2/Fe2+投加比、初始pH、H2O2投加量、反应时间和Fenton试剂投加方式对渗滤液COD去除效果的影响。研究发现:经过生物预处理后,渗滤液的COD和TP分别降低了24%和25%;氧化钙调碱可以进一步使COD和TP去除率分别达到42%和96%;后续Fenton深度氧化的最佳条件为:初始pH为2,H2O2投加量为2.4 g/L,H2O2/Fe2+摩尔比为5∶1,Fenton试剂一次投加,反应时间为2 h。在此条件下,渗滤液的COD从1 340 mg/L降到198 mg/L,总COD去除率达到85%。  相似文献   

6.
垃圾渗滤液是一种成分复杂、毒性较强且难处理的废水之一。实验采用混凝沉淀-厌氧-电解-好氧一体化组合工艺处理垃圾渗滤液,探索了混凝沉淀池和电解池的运行参数对垃圾渗滤液处理效果的影响,并分析了组合工艺对于6种重金属(Cu、Zn、Cd、Cr和Ni)的去除效果。实验结果表明,以PAC为混凝剂PAM为助凝剂时,投加量分别为1.2 g/L和1mg/L,COD去除率可达57%。电化学工艺阶段,在p H为6.0,电流密度15 m A/cm2,Cl-浓度2 200~2 400 mg/L,电解2.5h,垃圾渗滤液的COD去除率达55.4%。一体化电生物滤池对于重金属的去除具有明显的效果,Cu、Cd和Zn去除率达100%,Ni去除率超过90%,Cr去除率超过80%,COD整体去除率达94%;NH+4-N去除率达97.2%;TN去除率达73.6%。混凝沉淀-厌氧-电化学-好氧的组合工艺来处理垃圾渗滤液,能够有效地去除水体中的重金属及COD、NH+4-N。  相似文献   

7.
响应面法优化Fenton处理难降解反渗透垃圾浓缩渗滤液   总被引:10,自引:2,他引:8  
采用了基于中心复合设计(CCD)的响应面分析方法(RSM)研究了Fenton试剂处理难降解反渗透垃圾浓缩渗滤液过程中初始pH、FeSO4.7H2O用量、[H2O2]/[Fe2+]摩尔比3个因素对浓缩液中COD去除率的影响。由Design Ex-pert 7.1软件设计分析实验数据,得到了一个二次响应曲面模型,模型具有较高的回归率(R2=0.9699),与实验结果吻合程度较高。该模型显示COD的去除率与3个因素之间不是简单的单调函数关系,它们彼此之间存在一个最佳数值而使去除率达到最高。H2O2与Fe2+之间具有很强的相互增效作用,COD的去除由氧化作用和混凝作用共同完成。在最佳pH值为3.75,FeSO4.7H2O投加量为17.91 mmol/L、[H2O2]/[Fe2+]摩尔比为1.36的反应条件下,COD去除率能达到最高值(72.25%)。  相似文献   

8.
采用MAP-Fenton法对垃圾渗滤液进行预处理研究,以氨氮和COD的去除率为衡量指标,根据单因素实验和正交实验确定其最佳工艺条件。MAP阶段的最佳工艺条件:pH=9.5、Mg2+∶NH+4∶PO3-4(摩尔比)=1.3∶1.0∶1.3、反应时间为25min;Fenton阶段的最佳工艺条件:pH=3.5、30%(质量分数)H2O2投加量20mL/L、H2O2∶FeSO4·7H2O(摩尔比)=5∶1、反应时间为2.0h。在上述最佳工艺条件下,垃圾渗滤液氨氮和COD去除率的平均值分别为93.89%和90.12%。  相似文献   

9.
Fenton氧化-活性炭吸附协同深度处理垃圾渗滤液的研究   总被引:2,自引:0,他引:2  
以上海某垃圾填埋场垃圾渗滤液为研究对象,采用Fenton氧化-活性炭吸附协同处理工艺对其处理效果进行研究。探讨了投加方式以及H2O2浓度、Fe2+浓度、活性炭投加量、温度、pH等因素对COD去除率的影响。结果表明:采用先投加活性炭吸附30 min后投加Fenton试剂反应150 min的方式能够获得最好的COD去除效果。正交实验表明各因素对COD去除的主次关系为:活性炭投加量Fe2+浓度反应温度H2O2浓度pH值;其最优化条件为:活性炭投加量为16g/L,Fe2+浓度为29 mmol/L,反应温度为60℃,H2O2浓度为78 mmol/L,pH值为3。  相似文献   

10.
采用化学还原法制备纳米四氧化三铁,与聚合氯化铝(PAC)制备MFPAC磁性混凝剂,利用混凝沉淀-矿化垃圾吸附预处理垃圾渗滤液,用单因素变量法确定实验的最佳运行参数。结果表明:MFPAC磁性混凝剂对COD和色度的去除效果优于单独投加混凝剂PAC,在纳米四氧化三铁与PAC的质量比为1∶3、MFPAC的投加量为1.5 g·L~(-1)、搅拌条件为转速为300 r·min-1下搅拌60 s、溶液pH值为7.5(垃圾渗滤液原水的pH值)、絮凝时间为30 min的最佳运行条件下,COD由5 810 mg·L~(-1)降低到2 173 mg·L~(-1),色度由1 658倍降低到556倍,其COD去除率为62.6%,色度去除率为66.5%;利用矿化垃圾作为吸附剂处理MFPAC混凝处理后的出水,在矿化垃圾粒径小于2 mm、焙烧温度为700℃、吸附剂投加量为40 mg·L~(-1)、pH值为9的最佳条件下,经过12 h的处理,COD和氨氮的去除率分别为56.7%和68.4%,最终出水的COD和氨氮的浓度分别为941 mg·L~(-1)和343 mg·L~(-1);最终,MFPAC混凝沉淀-矿化垃圾吸附工艺对垃圾渗滤液COD、色度和氨氮的去除率分别为83.8%、78.5%和74.3%。  相似文献   

11.
Fenton-混凝法处理苯胺废水   总被引:1,自引:1,他引:0  
农药生产过程中产生的苯胺废水,COD浓度高、生物毒性强、可生化性差,一般生化方法很难处理。研究了Fenton与PAC联用处理苯胺废水。结果表明,Fenton氧化处理苯胺废水在最佳条件为pH=6、m(H2O2)/m(COD)=1.8、n(H2O2)/n(Fe2+)=8时,COD和色度去除率分别为78.4%和92.3%。Fenton氧化后废水B/C值由0.037提高到0.324。最佳条件下联用PAC,在投加量为320 mg/L时COD与色度去除率分别为83.6%和94.8%,并且处理时间显著缩短,实际应用中可减少水力停留时间和构筑物体积。  相似文献   

12.
垃圾渗滤液经一般生化处理后色度很大。对混凝和芬顿法结合深度处理垃圾渗滤液对色度去除进行了研究。混凝段通过中心复合设计(简称CCD)和响应面方法(简称RSM)分析了混凝的色度去除率的响应特征,建立了实际因素的最终方程模型:Y(色度去除率,%)=-553.40+73.74A+229.06B+0.38AB-34.16A2-22.67B2,(Y、A、B分别代表色度去除率、投加量和pH)并对絮凝条件进行优化,得到混凝反应的最佳优化条件:投加量1.11 g/L,pH 5.06,及在此条件下的去除率67.2%。在芬顿段,将芬顿反应对水中亲水性有机物相对含量(UV254)与对色度的去除特征相结合进行了研究,证明色度的去除跟该类有机物的去除有关,色度去除率最优值条件选择为H2O2/COD=1.0,Fe2+/H2O2=0.35∶1,而初始pH=2.5时对色度的去除达到99%以上。整个工艺出水可达到达标排放标(GB16889-2008)。  相似文献   

13.
对絮凝预处理后的垃圾渗滤液进行Fenton氧化处理。通过微分法对Fenton氧化的反应级数进行求解,确定其反应级数为2,并初步建立了Fenton氧化的动力学模型,即1/c=1/c0+kt,由此建立起来的降解的动力学模型与实验数据相吻合;在4个实验基准条件下———初始COD浓度为960 mg/L、pH值4、H2O2投加量0.4 mol/L、nH2O2/nFe2+3∶1,探讨了其中某一变量对反应速率的影响。实验水样为絮凝反应出水,进水COD浓度为912~960 mg/L,出水COD浓度为80~112 mg/L,COD去除率在87%~92%之间,表明Fenton试剂能够有效地处理垃圾渗滤液。  相似文献   

14.
聚合氯化铝与粉末活性炭联合强化混凝处理垃圾渗滤液   总被引:1,自引:0,他引:1  
研究了联合粉末活性炭与聚合氯化铝(PAC)强化混凝对垃圾渗滤液原水的处理效果。结果表明,在原水COD为4 100 mg/L、浊度为147 NTU、UV254为20的条件下,粉末活性炭的加入可以有效增加垃圾渗滤液中有机物的去除率,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,COD的去除率由21.6%提高到29.1%,UV254去除率由29.8%提高到39.9%,剩余浊度由138 NTU降到133 NTU。该强化混凝过程使原水中溶解性小分子有机物的去除率提高显著,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,在分子量小于1 kDa的范围内,UV254去除率由2.9%上升为10%。  相似文献   

15.
A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L?1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L?1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91–99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L?1 of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples.

Implications: Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H2O2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91–99% of heavy metals removal. The coupled coagulation–oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.  相似文献   

16.
通过Fenton法和结合聚合硫酸铁的混凝作用,实现垃圾渗滤液氧化塘出水COD的深度处理;并利用水泥水化产物的凝胶物质,强化COD去除率。30%H2O2投加量为0.75mL/L、七水硫酸亚铁投加量为1.5g/L、n(H2O2):n(Fe^2+)=1.2:1(摩尔比)时,Fenton法对渗滤液COD的去除率可达52%;水灰比为2:1、搅拌24h的水泥水化物将Fenton法的出水pH值从4调至10,该工艺流程总的COD去除率为73.6%,较普通的Ca(OH)2调节法提高9.3%,出水COD可以从进水的1200mg/L降至315mg/L。  相似文献   

17.
高星  李平  吴锦华 《环境工程学报》2014,8(6):2376-2380
采用"混凝-电解氧化-完全混合式活性污泥法(CSTR)"组合工艺深度处理垃圾渗滤液生物处理出水。探索了工艺的组合及各种工艺操作条件对垃圾渗滤液深度处理效果的影响,并对其影响机理进行了初步探讨。结果表明,以PAC为混凝剂时,在pH和药剂(有效成分)投加量分别为6.0和600 mg/L条件下,渗滤液COD去除率达到50%,有效降低了难溶惰性COD含量,缩短了后续电化学处置时间。混凝工艺后,采用电化学工艺处理,在最优工艺条件下:pH为6.0、电流I为1.2 A(电流密度为18.18 mA/cm2)、Cl-投加量为1 000 mg/L、极板距离为2 cm,电解30 min渗滤液COD去除率达到36%,同时,难降解有毒物含量明显降低,渗滤液可生化性TbOD/COD由10%提升至最大值64%。最后采用CSTR处理渗滤液电解出水,系统出水COD、氨氮和色度分别为100~150 mg/L、7~13 mg/L和25倍,为反渗透(RO)工序提供了良好的水质条件。  相似文献   

18.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

19.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

20.
Pre-oxidation and coagulation of textile wastewater by the Fenton process   总被引:30,自引:0,他引:30  
Kang SF  Liao CH  Chen MC 《Chemosphere》2002,46(6):923-928
This paper evaluates the Fenton process, involving oxidation and coagulation, for the removal of color and chemical oxygen demand (COD) from synthetic textile wastewater containing polyvinyl alcohol and a reactive dyestuff, R94H. The experimental variables studied include dosages of iron salts and hydrogen peroxide, oxidation time, mixing speed and organic content. The results show that color was removed mainly by Fenton oxidation. The color removal reached a maximum of 90% at a reaction time of 5 min under low dosages of H2O2 and Fe2+. In contrast, the COD was removed primarily by Fenton coagulation, rather than by Fenton oxidation. The ratio of removal efficiency between Fenton process and ferric coagulation was 5.6 for color removal and 1.2 for COD removal. It is concluded that Fenton process for the treatment of textile wastewater favors the removal of color rather than COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号