首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

2.
This study was conducted to investigate the effects of soil properties on the heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) at the field scale. The concentrations of cadmium (Cd), mercury (Hg), and chromium (Cr) in topsoil and vegetable samples from Nanhai district of Foshan city in the Pearl River Delta (PRD) were analyzed. The results showed that 56.5% of the soil samples exceeded the grade II of the Chinese Soil Environmental Quality Standard (GB 15618-1995) for Hg concentrations, while 8.70% and 17.4% of the vegetable samples exceeded the criteria of the Chinese Safety Qualification of Agricultural Products (GB 18406.1-2001) for Cd and Hg concentrations, respectively. The calculated bio-concentration factor (BCF; i.e., the ratio of the metal concentration in the edible parts of flowering Chinese cabbage to that in soil) values were ranked as: Cd (0.1415) > Cr (0.0061) > Hg (0.0012) (p < 0.01), which demonstrated that Cd was easier to be accumulated in the edible parts of flowering Chinese cabbage than Hg and Cr. Furthermore, the following relationships between (bio-concentration factor) BCF values (BCFs) and soil physicochemical properties were concluded from our results: i) the mean BCFs of coarse-textured soils were higher than those of fine-textured soils; ii) the BCFs decreased with increasing soil pH; iii) the soils with high organic matter(OM) and Cation exchange capacity (CEC) have low BCFs, resulting from their high sorption capacities for Cd, Hg, and Cr. The stepwise linear multiple regression analyses showed that total metal concentrations and available calcium in soils were two main factors controlling the accumulation of Cd, Hg, and Cr in the flowering Chinese cabbage.  相似文献   

3.
This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (>?97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.  相似文献   

4.
Scientific interest in pollution from antibiotics in animal husbandry has increased during recent years. However, there have been few studies on the vertical exposure characteristics of typical veterinary antibiotics in different exposure matrices from different livestock farms. This study explores the distribution and migration of antibiotics from feed to manure, from manure to soil, and from soil to vegetables, by investigating the exposure level of typical antibiotics in feed, manure, soil, vegetables, water, fish, and pork in livestock farms. A screening environmental risk assessment was conducted to identify the hazardous potential of veterinary antibiotics from livestock farms in southeast China. The results show that adding antibiotics to drinking water as well as the excessive use of antibiotic feed additives may become the major source of antibiotics pollution in livestock farms. Physical and chemical properties significantly affect the distribution and migration of various antibiotics from manure to soil and from soil to plant. Simple migration models can predict the accumulation of antibiotics in soil and plants. The environmental risk assessment results show that more attention should be paid to the terrestrial eco-risk of sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, oxytetracycline, chlorotetracycline, ciprofloxacin, and enrofloxacin, and to the aquatic eco-risk of chlorotetracycline, ciprofloxacin, and enrofloxacin. This is the first systematic analysis of the vertical pollution characteristics of typical veterinary antibiotics in livestock farms in southeast China. It also identifies the ecological and human health risk of veterinary antibiotics.  相似文献   

5.
At a field-scale (6.7 ha), 100 surface soil samples were collected from a vegetable field to determine total concentrations of Cd, Co, Cu, Hg, Mn, Ni and Zn. To identify possible sources of these metals and characterize their spatial variation, classic statistic and geostatistic techniques were applied. Through correlation and geostatistical analysis, it was found that the primary inputs of Co, Mn and Ni were due to pedogenic sources, whereas the sources of Hg and Cd were mainly due to human activities. Because of their different sources, their variations followed: Hg > Cd ≈ Cu > Zn ≈ Co ≈ Mn ≈ Ni. Based on their relationships with other soil properties, co-kriging was used to minimize sampling density. Sampling numbers for Cd, Cu, Zn, Mn, Co and Ni can be reduced from 100 to 90, 80, 70, 60, 60 and 60, respectively, without losing accuracy relative to ordinary kriging.  相似文献   

6.
Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0-22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P > Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0-22 cm soil depths except for Cd in the 10-22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe-Mn oxides form in the 0-10 and 10-22 cm soil layers. Cadmium was predominantly in the Fe-Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0-10 cm soil layer.  相似文献   

7.
One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p?<?0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p?<?0.05), and some influence on vegetable leaves (p?<?0.05), but no significant influence on Hg accumulation in grass leaves (p?>?0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g–1, respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m–3.  相似文献   

8.
Amending soils with compost may lead to accumulation of metals and their fractions at various concentrations in the soil profile. The objectives of this study were to determine 1) the accumulation of Cu, Fe, Mn, and Zn with depth and 2) the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each metal in soils amended with MSW compost, co-compost, biosolids compost and inorganic fertilizer (as control). Total concentrations of Cu, Fe, Mn and Zn were concentrated in the 0-22 cm soil layer and scant in the rock layer. These metals were in the decreasing order of Fe > Mn > Zn > or = Cu. Copper, Fe, and Zn were predominantly in the residual form followed by fractions associated with Fe-Mn oxides, carbonate, organic, exchangeable and water soluble in all treatments except MSW compost amended soil where the organic fraction was higher than the carbonate fraction. In fertilizer, co-compost and biosolids compost treated soils Mn concentrated mainly in the Fe-Mn oxides form followed by residual, carbonate, and organic forms whereas, in MSW compost treated soil the same pattern occurred except that Mn organic fraction was higher than that in the carbonate form. The MSW compost has a greater potential to be used as a soil amendment to supply plants with Cu, Mn and Zn than other treatments in calcareous soils of south Florida.  相似文献   

9.
Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation.  相似文献   

10.
An assessment of the off-site migration of pesticides from agricultural activity into the environment in the Neuquen River Valley was performed. The aim of this study was to evaluate the distribution of pesticides in several compartments of a small agricultural sub-catchment. Soil, surface water, shallow groundwater and drift deposition were analyzed for pesticide residues. Results showed the presence of some pesticide residues in soil, surface water and shallow groundwater compartments. The highest detection frequencies in water (surface and subsurface) were found for azinphos-methyl and chlorpyrifos (>70%). In terms of concentration, the highest levels were observed in shallow groundwater for azinphos methyl (22.5 μg/L) and carbaryl (45.7 μg/L). In the soil, even before the application period had started, accumulation of residues was present. These residues increased during the period studied. Spray drift during pesticide application was found to be a significant pathway for the migration of pesticide residues in surface water, while leaching and preferential flows were the main transport routes contributing to subsurface contamination.  相似文献   

11.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

12.
《Chemosphere》2011,82(11):1423-1429
The effects of five short-chain organic acids (SCOAs) on the behaviors of pyrene in soil–water system were investigated. The influences of the quantity and species of organic acids, pH, and soil dissolved organic matter were considered. The results showed the presence of SCOAs inhibited the adsorption and promoted the desorption of pyrene in the following order: citric acid > oxalic acid > tartaric acid > lactic acid > acetic acid. The decreased extents of pyrene adsorption performance enhanced with increasing SCOA concentrations, while the decreasing rate became less pronounced at high SCOA concentrations. In the presence of organic acids, the adsorption ability of pyrene decreased with increasing pH. However, there was a slight increase of pyrene adsorption with the addition of oxalic acid, tartaric acid and citric acid above pH 8. The capacity for pyrene retention differentiated significantly between the soils with and without dissolved organic matter. The presence of SCOAs was also favorable for the decrease of pyrene adsorption on soil without dissolved organic matter. The results of this study have important implications for the remediation of persistent organic pollutants in soil and groundwater.  相似文献   

13.

Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L?1) or/and Tween 80 (TW80, surfactant, 50 g L?1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L?1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (?1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.

  相似文献   

14.
The intensive use for over 100 years of copper sulfate (Bordeaux mixture) to fight against mildew in vineyard soils has led to an important, widespread accumulation of Cu (100 to 1500 mg Cu kg-1 soil). In Champagne vineyards, organic amendments are used currently to increase soil fertility and to limit soil erosion. Organic amendments may have a direct effect on the retention of Cu in the soil. To assess the influence of the organic management on the fate of Cu in calcareous Champagne vineyard soils, we studied Cu distribution (1) in the soil profile and (2) among primary soil particles, in vineyard parcels with different amendments. Amendments were oak-bark, vine-shoots and urban compost. The results were compared with the amount and the distribution of Cu in an unamended calcareous soil. Physical soil fractionations were carried out to separate soil primary particles according to their size and density. Cu has a heterogeneous distribution among soil particle fractions. Two fractions were mainly responsible for Cu retention in soils: the organic debris larger than 50 microns or coarse particulate organic matter (POM) issued from the organic amendments, and the clay-sized fraction < 2 microns. The POM contained up to 2000 mg Cu kg-1 fraction and the clay fraction contained up to 500 mg Cu kg-1 fraction. The clay-sized fraction was responsible for almost 40% of the total amount of Cu in the four parcels. POM was predominantly responsible for the differences in Cu contents between the unamended and the three amended parcels. Our results attested that methods of soil particle-size fractionation can be successfully used to assess the distribution of metal elements in soils.  相似文献   

15.
Land use in east China tends to change from paddy rice to vegetables or other high-value cash crops, resulting in high input rates of organic manures and increased risk of contamination with both heavy metals (HMs) and antibiotics. This investigation was conducted to determine the accumulation, distribution and risks of HMs and tetracyclines (TCs) in surface soils and profiles receiving different amounts of farmyard manure. Soil samples collected from suburbs of Hangzhou city, Zhejiang province were introduced to represent three types of land use change from paddy rice to asparagus production, vineyards and field mustard cultivation, and divided into two portions, one of which was air-dried and sieved through 2-, 0.3- and 0.149-mm nylon mesh for determination of pH and heavy metals. The other portion was frozen at ?20 °C, freeze-dried and sieved through a 0.3-mm nylon mesh for tetracyline determination. HM and TC concentrations in surface soils of 14-year-old mustard fields were the highest with total Cu, Zn, Cd and ∑TCs of 50.5, 196, 1.03 mg?kg?1 and 22.9 μg?kg?1, respectively, on average. The total Cu sequence was field mustard?>?vineyards?>?asparagus when duration of land use change was considered; oxytetracycline (OTC) and doxycycline were dominant in soils used for asparagus production; OTC was dominant in vineyards and chlortetracycline (CTC) was dominant in mustard soils. There were positive pollution relationships among Cu, Zn and ∑TCs, especially between Cu and Zn or Cu and ∑TCs. Repeated and excessive application of manures from intensive farming systems may produce combined contamination with HMs and TCs which were found in the top 20 cm of the arable soil profiles and also extended to 20–40 cm depth. Increasing manure application rate and cultivation time led to continuing increases in residue concentrations and movement down the soil profile.  相似文献   

16.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

17.
Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption–desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption–desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d?=?6.73–9.21) than other sulfonamides (K d?=?0.03–0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8–12 % is not so high to be considered significant. Low pH (<pK a of tested VPs) and rich soil organic matter (e.g., 0–20 cm soil sample) had a positive impact on sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6–98.0 %) in the leachate, while the recovery rate of TMP was only 4.2–10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20–80 cm and 0–20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.  相似文献   

18.
Organochlorine pesticides (OCPs) such as DDT and DDE have been detected in the surface 0.2 m of Vertisols in the lower Namoi Valley of north western New South Wales, Australia even though they have not been applied to crops since 1982. However, their presence in the deeper soil horizons has not been investigated. The objective of this study was to determine if OCPs were present to a depth of 1.2 m in Vertisols under irrigated cotton farming systems in the lower Namoi Valley of New South Wales. Soil was sampled from the 0-1.2 m depths in three sites, viz. the Australian Cotton Research Institute, ACRI, near Narrabri (149°36′E, 30°12′S), and two cotton farms near Wee Waa (149°27′E, 30°13′S) and Merah North (149°18′E, 30°12′S) in northern New South Wales, Australia. The OCPs detected and their metabolites were α-endosulfan, β-endosulfan, endosulfan sulphate, DDD, DDE, DDT and endrin. The metabolite DDE, a breakdown product of DDT, was the most persistent OCP in all depths analysed. Endosulfan sulphate was the second most persistent followed by endrin > α-endosulfan > β-endosulfan > DDT and DDD. DDT was sprayed extensively in the lower Namoi Valley up to the early 1980s and may explain the persistence of DDE in the majority of soil samples. Dicofol and Dieldrin, two OCPs previously undocumented in Vertisols were also detected. The movement of OCPs into the subsoil of Vertisols may occur when irrigation or rain transports soil colloids and organic matter via preferential flow systems into the deeper layers of a soil profile. Persistence of OCPs was closely correlated to soil organic carbon concentrations. The persistence in soil of OCP’s applied to cotton crops grown more than two decades ago suggests that they could enter the food chain. Their presence at depths of 1.2 m suggests that they could move into groundwater that may eventually be used for domestic and stock consumption.  相似文献   

19.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

20.
The distribution and concentration of some organochlorine pesticides (OCPs) in the soil around a pesticide factory in Zibo, China, were examined, including dichlorodiphenyltrichloroethane (DDT) and its metabolites, isomers of hexachlorocyclohexane (HCH) and endosulfan (ENDO). The results showed that the OCPs concentrations were extraordinary high in this region. The concentrations of DDTs, HCHs, and ENDO were measured in the range of 0.775–226.711, 0.248–42.838, and 0.081–1.644 mg kg?1, respectively. DDT and its isomers were identified to be the dominate contaminants in most of the sampling sites. In the vertical direction, the distribution pattern of the total OCPs was in order of DDTs, HCHs, and ENDO in the 0–20 cm, but in 20–40 and 40–60 cm the trends were unobvious. Although no recent input occurred in most areas, the residues of OCPs remained in deep soil due to their persistence. Unlike ENDO, DDTs and HCHs appeared to have the similar property in terms of not only the migration pattern in soil, but also the relationship to the same dominant impact factor (i.e. organic matter). DDTs and HCHs were affected positively by the organic matter, whereas ENDO was affected negatively. Due to the interrelationship among various impact factors, the spatial distribution of pesticides in the soil was considered to be a combined result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号