首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
分析了洛阳市3个污水处理厂脱水污泥中Cu、Zn、Ni、Cr和Pb的含量,采用BCR法研究了污泥中重金属的形态分布特征,并利用地累积指数法(Igeo)和潜在生态危害指数法(RI)评价污泥在农用过程中重金属的潜在生态风险。结果表明,涧西污泥中Cu、Zn和Ni含量超过了农用泥质A级标准的限值(CJ/T309-2009),而新区污泥和瀍东污泥显示出良好的农用性质。污泥中Cu和Cr主要以可氧化态存在,Zn主要以酸溶态和可还原态存在,迁移性强,Ni含量分布相对比较均匀,Pb主要以残渣态存在。Igeo表明,污泥中Cu、Zn是潜在的污染元素。RI表明,Cu表现出高潜在生态风险;Zn的总含量虽高,但Zn的生物毒性响应因子低,对污泥的潜在风险贡献较低。  相似文献   

2.
Cu和Zn是中国污泥中最易超标的重金属元素.对长江三角洲地区南京、苏州、上海和杭州等15个城市的污水处理厂57个污泥样品的Cu和Zn全量和EDTA提取态Cu和zn含量及其污染风险进行了初步研究.结果表明,污水处理厂污泥中Cu和Zn全量分别为32~19 656、112~15 306 mg/kg,平均值分别为1 814、2 135 mg/kg;污泥中Cu和Zn平均含量以浙江最高,江苏最低;以生活污水为主的污水处理厂污泥中Cu和Zn含量较低,污泥制品含量最高;EDTA提取态Cu和Zn占全量Cu和Zn的平均质量分数分别为8.4%和21.4%,EDTA对Zn的提取能力远大于Cu.总之.污水处理厂污泥的Cu和Zn含量差异较大,部分污泥的Cu和Zn含量超过了污泥农用的重金属控制标准.为了保护生态环境和人类健康,防止二次污染,污泥农用时需考虑Cu和Zn含量,采取相应的控制措施.  相似文献   

3.
从濮阳市9座规模较大且运行稳定的污水处理厂采集城市污泥,对城市污泥的理化性质和重金属浓度、形态分布进行分析,并对其资源化利用的生态风险进行评价。结果表明,城市污泥呈现高有机质、高氮、高磷的特点,且重金属浓度均低于《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的标准限值,具有较高的资源化利用价值。城市污泥中Cu、Pb、Cd、Ni、Cr、As、Hg主要以可氧化态和残渣态存在,在自然环境下较为稳定;Zn主要以酸可交换态和易还原态存在,具有较强的生物活性和迁移性。城市污泥中重金属的潜在生态风险总体较低,Cu、Zn、Cd、Hg为风险元素,其中Zn的污染程度最高,在城市污泥资源化利用时应制定相应防范措施。  相似文献   

4.
传统活性污泥法处理城市污水过程中重金属的变化研究   总被引:4,自引:0,他引:4  
研究了污水处理厂传统活性污泥工艺不同处理工段污水和污泥中Cu、 Zn、 Pb、 Cd、 Hg和As含量变化及其在污水中的形态分布特征,进一步了解重金属在不同处理工段的去除情况.整个工艺流程污水中Hg的去除率最大,平均达76.4%,Pb的去除率最小,平均为29.7%.不同处理工段各重金属去除率差异较大,从进水到初沉池出水Zn去除率最大,平均达55.4%,其次为Hg和Cu,平均去除率分别为40.0%与34.2%;由初沉池出水到二沉池出水Cd、Hg和Cu平均去除率达36.1%~38.5%.进水、初沉池出水和二沉池出水中颗粒态Zn占其总量的比例(以质量分数计,下同)均在98.1%以上,颗粒态Hg占其总量的比例由84.1%降低到39.7%,颗粒态As占其总量的比例由11.7%上升至56.5%.初沉池污泥、曝气池活性污泥和脱水消化污泥中Zn含量最高,初沉池污泥中Cd含量最低,曝气池活性污泥和脱水消化污泥中As含量最低.脱水消化污泥中Zn、Cu、Pb和Cd含量高于初沉池污泥和曝气池活性污泥,Hg和As含量低于初沉池污泥而高于曝气池活性污泥.大部分Zn和Pb在初沉池中被除去,大部分Cd在二沉池中被除去,Hg和Cu在初沉池与二沉池中的去除效果相当.  相似文献   

5.
为评价厌氧消化污泥与菌渣对煤矸石特征污染物释放的原位控制效果,分别向煤矸石中添加厌氧消化污泥、菌渣、厌氧消化污泥与菌渣混合物,稳定、陈化30d后测定煤矸石浸出液pH、电导率(EC)、氧化还原电位(Eh)、总Fe、Fe~(2+)、SO_4~(2-)及煤矸石有效态Fe、Mn、Cu、Zn等指标进行控制效果研究。结果表明:(1)厌氧消化污泥、菌渣及其混合物的添加均能不同程度提高煤矸石浸出液pH。(2)厌氧消化污泥、菌渣及其混合物的添加均可不同程度降低煤矸石浸出液总Fe、Fe~(2+)、SO_4~(2-)及煤矸石有效态Fe,且厌氧消化污泥与菌渣混合组降低效果总体上最明显。(3)厌氧消化污泥、菌渣及其混合物对煤矸石中Mn、Zn、Cu释放的影响存在明显差别,其中厌氧消化污泥、厌氧消化污泥与菌渣混合组均增加煤矸石浸出液总Mn、总Zn及煤矸石有效态Mn、Zn;菌渣组、厌氧消化污泥与菌渣混合组均能有效降低煤矸石浸出液总Cu及煤矸石有效态Cu。  相似文献   

6.
分析了广州市中心城区5个主要的污水处理厂污泥的基本理化性质和7种重金属(Cr、Cu、Mn、Ni、Pb、Cd和Zn)在不同雨期的浓度变化,估算了广州市污水处理厂污泥重金属的年排放通量,并对其污泥农用做了潜在风险评价。结果表明,各污水厂污泥均达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)对重金属的排放要求,污泥的基本理化性质满足《城镇污水处理厂污泥处置农用泥质》(CJ/T309-2009)标准,沥滘、猎德、京溪和大坦沙污水厂的污泥重金属满足CJ/T309-2009要求,而西朗污水处理厂2013年12月采集的污泥中Cu和Cd未达标。通过估算,广州市污水处理厂污泥中Cr、Cu、Mn、Ni、Pb、Cd和Zn的年排放通量分别为16.1、18.8、90.3、5.9、7.9、0.2和48.3 t。通过Hakanson生态风险评估,污泥在农用过程中除西朗污水处理厂污泥重金属危害为中等风险,其他厂污泥属于低风险。  相似文献   

7.
利用生物淋滤法处理城市污泥,以生物淋滤过程中pH、ORP(氧化还原电位)变化以及重金属(Zn、Cu、Cd)溶出率为指标,考察淋滤菌接种比例、初始pH、淋滤时间对生物淋滤的影响,并分析了生物淋滤前后,重金属形态变化以及重金属的生物有效性和迁移性。结果表明富集筛选的嗜酸性氧化亚铁硫杆菌(A.f)可有效溶出污泥中的重金属。生物淋滤最佳条件为:初始pH=4.00,淋滤菌接种比例30%,重金属Zn,Cu,Cd在第10天的整体处理效果最优,溶出率分别达到75.30%、50.40%和74.44%。BCR形态分析表明:原污泥中Zn,Cu,Cd主要以弱酸提取态、可还原态和氧化态存在,残渣态较少;生物淋滤之后,3种重金属弱酸提取态、可还原态和氧化态含量有不同程度降低,其中,可还原态含量降低最为显著,残渣态基本无变化,并且淋滤后污泥中重金属氧化态及残渣态所占比例较淋滤前高,污泥稳定性得到提升。生物淋滤可以通过减少污泥中重金属含量和改变重金属形态降低其生物有效性和迁移性。  相似文献   

8.
城市污水处理厂的污泥农用对土壤的重金属影响   总被引:4,自引:0,他引:4  
污泥农用是城市污水处理厂污泥资源化利用的有效途径,但污泥中的重金属元素含量高,可能成为环境中的一种安全隐患。重金属对环境的危害不仅与其总量有关,更大程度上由其形态分布所决定。实验研究了污泥农用所引入的重金属对土壤重金属总量及其形态的影响,研究结果表明,污泥农用虽然明显增加了土壤中的重金属总量,但重金属在土壤中的活性却受到了抑制,从而降低了重金属通过食物链危害人类健康的风险。  相似文献   

9.
调理剂对堆肥产品重金属生物有效性的影响   总被引:1,自引:0,他引:1  
城市污泥中重金属含量及其生物有效性是限制污泥农用的主要因素,因此,研究污泥堆肥化处理过程中重金属生物有效性,对污泥的农用具有重要意义。实验以城市污泥为原料,以菌菇渣和秸秆为调理剂,设置4个处理:A(污泥∶菌菇渣∶秸秆=1∶0.4∶0.025)、B(污泥∶菌菇渣∶秸秆=1∶0.3∶0.025)、C(污泥∶秸秆=1∶0.12)和D(污泥∶秸秆=1∶0.09),进行好氧堆肥实验,采用BCR顺序提取法测定各种形态的重金属,研究堆肥前后重金属形态的变化规律。结果表明,城市污泥中Cu、Ni、Pb和Cr主要以可氧化态及残渣态存在,生物有效性较低,而Zn和Cd主要以酸溶态和可还原态存在,生物有效性较高;堆肥过程显著降低了Cu、Zn、Ni和Pb的生物有效性,并改变了Cu、Zn、Ni、Pb、Cr和Cd的形态分布,使污泥中的Cu、Zn、Ni、Pb和Cd向着更稳定的可氧化态或残渣态转变;污泥经过堆肥处理后,Cu、Zn和Ni 3种重金属生物有效性关系为:ABCD,与其他处理相比,处理A残渣态的Pb和Cr增加比例较多,综合来看,处理A对重金属生物有效性的降低最为明显,重金属钝化效果最佳。  相似文献   

10.
污水污泥中重金属污染物的溶出过程研究   总被引:3,自引:0,他引:3  
污水污泥中污染物尤其是重金属的水体浸出作为重要的二次污染途径备受关注。为了探讨污水污泥中重金属的溶出规律,对上海7个污水处理厂的污水污泥进行了重金属总量分析,并采用水平振荡法对上述污水污泥中重金属进行了溶出动力学研究。结果表明,污水污泥中Cu、Cr和Zn的含量均较高,之后依次是Pb、As、Cd和Hg;污水污泥中重金属溶出动力学过程分为快速反应和慢速反应两个过程,可以用Elovich方程进行模拟;污水污泥中各重金属的溶出负荷差异较大,Cu、Cr和Zn的溶出负荷较大,其他较小,但各重金属相对于污水污泥中重金属总量的溶出百分比差异不大,基本处于10%以下。  相似文献   

11.
Hseu ZY 《Chemosphere》2006,63(5):762-771
Phytotoxicity of heavy metal is the primary concern in applying biosolids (sewage sludge) to agricultural land. This study evaluates the changes in chemical speciation of Zn in three tropical soils of Taiwan measured with sequential extraction over a one-year period. Biosolids were applied to the soils at application rates of 10, 50 and 100 Mg ha(-1), and correlated diethylene triamine pentaacetic acid (DTPA) and sequential extraction as extract for prediction of Zn bioavailability to Chinese cabbage (Brassica chinensis L.). Experimental results indicated that the exchangeable (F1) and Fe-Mn oxide (F3) fractions in the sequential extractions increased with application rate of biosolids in the soils over time. Large amounts of Zn in the soils following the cessation of biosolids application were identified as soluble and were adsorbed by Fe-Mn oxides. The organically bound Zn, which is associated with readily decomposable carbon, is in limited amounts in the biosolid-treated soils. The DTPA-extractable concentrations of Zn in all biosolid-treated soils decreased over the time. A positive and significant correlation (r(2) = 0.96) was found between the Zn concentrations extracted with DTPA and sum of F1 and carbonate-bound (F2) fractions in the sequential extractions. Additionally, the concentrations of Zn extracted with DTPA were strongly correlated with the concentrations of Zn in the shoots of Chinese cabbages, indicating that F1+F2 in the sequential extractions was reliable for predicting Zn bioavailability to Chinese cabbage in the biosolid-treated soils.  相似文献   

12.
This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier’s scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe–Mn oxide bound fraction of Tessier’s scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier’s scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier’s scheme. The order of mobility of PTE was as follows: Cd?>?Zn?>?Pb in MDN site and As?>?Sb?>?Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.  相似文献   

13.
Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified Community Bureau of Reference (BCR) sequential extraction procedure. The purpose of the BCR-sequential extraction used in this study was to examine the availability of CCA metals in treated wood for reuse. Both As and Cr had a slightly higher concentration in the sludge sample than in original CCA-treated wood. The sequential extraction showed that As and Cr were principally existed in an oxidizable fraction (As, 67%; Cr, 88%) in original CCA-treated wood. Only 1% of both As and Cr were extracted by hot nitric acid with the last extraction step. The distribution of As and Cr changed markedly in liquefied CCA-treated wood sludge.The amount of As in the exchangeable/acid extractable fraction increased from 16% to 85% while the amount of Cr increased from 3% to 54%. Only about 3% of As was present in the oxidizable fraction. However, there was still about 34% of Cr in the same fraction. Based on these results from sequential extraction procedures, it can be concluded that the accessibilities of CCA metals increase markedly by the liquefaction–precipitation process.  相似文献   

14.
The partitioning of Co, Cr, Fe, Sc and Zn into three fractions (reducible by acidified hydroxylamine hydrochloride, oxidizable by acidified hydrogen peroxide, and the residual after the previous extractions) of Saronikos Gulf surface sediments was determined by using a sequential extraction technique. The metal concentrations were determined by Instrumental Neutron Activation Analysis. With the exception of Sc, the metal content in the reducible and oxidizable fractions increases in the polluted sediments near the Athens Sewage Outfall (ASO) and a Fertilizer Plant (FP). In the non-polluted sediments, the residual fraction is the most important carrier for all metals examined. Oxidizable Cr and Zn correlate well with the organic carbon content of the sediments, but the reducible fraction (mainly Fe/Mn hydroxides) is the most important sink for Co, Cr, Fe and Zn in the polluted sediments near the ASO. The pyrite-rich wastes from the FP are influencing the geochemical partitioning of the metals examined in the sediments in front of the FP and, partially, in the sediments near the ASO.  相似文献   

15.
A study was conducted to evaluate the effect of long-term irrigation of sewage contaminated with heavy metals like Cd, Cr, Cu and Pb on microbial and biochemical parameters of soils of West Bengal, India. The microbial parameters included microbial biomass carbon (MBC), microbial metabolic quotient; the biochemical parameters included fluorescein diacetate hydrolyzing activity, beta-glucosidase, urease, phosphatase, and aryl sulphatase activities. A sequential extraction technique was used to quantify water soluble, exchangeable, carbonate bound, Fe/Mn-oxide bound, organically bound, and residual metal fractions. Metal concentrations in the two most labile fractions (i.e., water soluble and exchangeable fractions) were generally low. Total metal concentrations at each site seemed to be associated with soil amorphous Fe and Al minerals. The MBC and the enzymes studied were significantly and negatively correlated with water soluble and exchangeable metals but not significantly correlated with other forms, indicating that water soluble and exchangeable forms exerted a strong inhibitory effect on the soil microbial and biochemical parameters. It was concluded that irrigating soils with metal contaminated sewage seemed to damage soil quality in the long term.  相似文献   

16.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

17.
A rapid ultrasound accelerated sequential extraction procedure has been used to develop sequential extraction proposed by BCR protocol (the community Bureau of Reference now the European Union "Measurement and Testing Programme"). The effects of the ultrasonic treatment on the extraction of Cu, Cd, Cr, Pb, Ni and Zn from untreated sewage sludge collected from industrial site of Hyderabad city (Pakistan) were compared with those obtained from conventional sequentional extraction procedure of modified BCR protocol. In BCR method, each extraction steps takes 10h, where as with the use of compromise sonication conditions in ultrasonic bath, steps 1-3 of the sequential extraction (excluding the hydrogen peroxide digestion in step 3, which was not performed with sonication) could be completed in 30, 30 and 30 min, respectively. Extractable Cd, Cr, Pb and Ni contents were obtained by both comparable methodologies were measured by electrothermal atomic absorption spectrometry (ETAAS), while for Cu and Zn Flame atomic absorption spectrometry (FAAS) was used. The validations of both methods were compared by the analysis of certified reference material of soil amended with sewage sludge (BCR 483). According to statistical evaluation of the results, the proposed accelerated extraction method is valid alternative to conventional shaking with much shorter extraction time with p value <0.05. The overall metal recoveries in steps 1-3 (excluding residual step) were 95-100% of those obtained with the conventional BCR protocol, except for Cu extracted (91.6%) as related to indicative values of Cu in BCR 483 obtained in 1-3 steps. The results of the partitioning study of untreated industrial waste water sewage sludge, indicate that more easily mobilized forms (acid exchangeable) were predominant for Cd and Zn, in contrast, the largest amount of Pb and Cr was associated with the iron/manganese oxide and organic matter/sulphide fractions.  相似文献   

18.
Yuan C  Weng CH 《Chemosphere》2006,65(1):88-96
An enhanced electrokinetic process for removal of metals (Cr, Cu, Fe, Ni, Pb, Zn) from an industrial wastewater sludge was performed. The electrokinetic experiments were conducted under a constant potential gradient (1.25 V cm(-1)) with processing fluids of tap water (TW), sodium dodecylsulfate (SDS) and citric acid (CA) for 5 days. Results showed that metal removal efficiency of heavy metals for EK-TW, EK-SDS and EK-CA systems are 11.2-60.0%, 37.2-76.5%, and 43.4-78.0%, respectively. A highest metal removal performance was found in EK-CA system. The removal priority of investigated metals from sludge by EK process was found as: Cu > Pb > Ni > Fe > Zn > Cr. The results of sequential extraction analysis revealed that the binding forms of heavy metals with sludge after electrokinetic process were highly depend upon the processing fluid operated. It was found that the binding forms of metals with sludge were changed from the more difficult extraction type (residual and sulfate fractions) to easier extraction types (exchangeable, sorbed, and organic fraction) after treatment by electrokinetic process. Results imply that if a proper treatment technology is followed by this EK process to remove metals more effectively, this treated sludge will be more beneficial for sludge utilization afterwards. Before it was reused, the risk associated with metals of more mobile forms to the environment need to be further investigated. The cost analysis was also evaluated for the investigated electrokinetic systems.  相似文献   

19.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

20.
Determination of seven congeners of PCBs was carried out for sewage sludge before, during and after thermophilic digestion. The overall content of heavy metals (Zn, Cu, Ni, Cd, Pb, Cr) in sludge before and after digestion was determined. Moreover the concentration of heavy metals in particular chemical fractions of the sludge was analyzed. After the thermophilic digestion total concentration of seven PCBs was reduced by 47%, which suggests that thermophilic digestion affects PCB reduction positively. On the 10th d of the process, concentration of lower chlorinated PCBs increased, whereas those of higher chlorinated PCBs decreased. The thermophilic digestion process showed no accumulation of the studied heavy metals in the mobile fractions (exchangeable and carbonate) of the stabilized sewage sludge, except for nickel. The highest increase in zinc, copper, cadmium, and chromium concentration was observed in the organic-sulfide fraction, whereas the highest increase in lead was found in the residual fraction of the sludge. In case of nickel both fractions of organic-sulfide and exchangeable-carbonate fractions were enriched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号