首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Deep percolation of nitrate can contribute to the deterioration of groundwater resources. Leaching of nitrate is a complex process affected by fertilizer and irrigation practices, efficiency of N use by the crop, and how the soil's water holding capacity and water transmission properties are affected by soil texture. Depleted (15NH4)2SO4 fertilizer at N rates of 0, 125, 250 and 375 kg ha−1 was applied annually for 3 years to continuous corn grown within three different water regimes. This time period and the labeled N permitted an evaluation of N use efficiency by the crop and NO3 leaching and carryover on a Weld silty clay loam, a fine-textured soil, typical of the “hardland” soils of the semi-arid Great Plains. Three water regimes, W1 ( 1.5 ET), W2 ( ET) and W3 ( 0.8 ET), were used. Beneath each plot within each water regime, Duke-Haise vacuum trough extractors were installed under undisturbed soil profiles at 1.22-m depth to measure weekly percolate and the NO3 concentration in the percolate. The corn was harvested in the fall in the dent stage to measure the total above-ground biomass N uptake. Soil profiles (1.8 m) were sampled annually in the fall after crop harvest to determine NO3---N in the soil or carryover.Great variability was encountered in measuring the amount of extractor water and its NO3 content under each water regime, which made estimates of N03 leaching losses unreliable. Also, the variability demonstrates formidable problems in quantifying percolation losses with vacuum trough extractors under undisturbed fine-textured soil profiles. With the highest N rate of 376 kg ha−1 yr−1 and within the water regime W1, where leaching was expected to be greatest, only 1% of the cumulative labeled N applied was found in extractor waters and most movement of the labeled N into extractors occurred the third year. The 125-kg-ha−1 yr−1 fertilizer N rate significantly increased the crop yield over the unfertilized plots without increasing residual NO3---N accumulation; whereas fertilizer N rates of > 125 kg ha−1 yr−1 did not appreciably increase plant yields over the 125-kg-ha−1-N rate, but did appreciably increase residual NO3.  相似文献   

2.
The Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded. 42 groundwater samples collected from springs in the NURS showed great variation of chemical compositions across the study basin. With increased anthropogenic contamination in the area, the groundwater chemistry has changed from the typical Ca–HCO3 or Ca (Mg)–HCO3 type in karst groundwater to the Ca–Cl (+ NO3) or Ca (Mg)–Cl (+ NO3), and Ca–Cl (+ NO3 + SO4) or Ca (Mg)–Cl (+ NO3 + SO4) type, indicating increases in NO3, Cl and SO42− concentrations that were caused most likely by human activities in the region. This study implemented the R-mode factor analysis to investigate the chemical characteristics of groundwater and to distinguish the natural and anthropogenic processes affecting groundwater quality in the system. The R-mode factor analysis together with geology and land uses revealed that: (a) contamination from human activities such as sewage effluents and agricultural fertilizers; (b) water–rock interaction in the limestone-dominated system; and (c) water–rock interaction in the dolomite-dominated system were the three major factors contributing to groundwater quality. Natural dissolution of carbonate rock (water–rock interaction) was the primary source of Ca2+ and HCO3 in groundwater, water–rock interaction in dolomite-dominated system resulted in higher Mg2+ in the groundwater, and human activities were likely others sources. Sewage effluents and fertilizers could be the main contributor of Cl, NO3, SO42−, Na+ and K+ to the groundwater system in the area. This study suggested that both natural and anthropogenic processes contributed to chemical composition of groundwater in the NURS, human activities played the most important role, however.  相似文献   

3.
The present study aimed to investigate the NH3 volatilization loss from field-applied compost and chemical fertilizer and evaluate the atmosphere–land exchange of NH3 and particulate NH4+ (pNH4) at an upland field with volcanic ash soil (Andosol) in Hokkaido, northern Japan. Two-step basal fertilization was conducted on the bare soil surface. First, a moderately fermented compost of cattle manure was applied by surface incorporation (mixing depth, 0–15 cm) at a rate of 117 kg N ha−1 as total nitrogen (T-N) corresponding to 9.9 kg N ha−1 as ammoniacal nitrogen (NH4–N). Twelve days later, a chemical fertilizer containing 10% (w/w) of NH4–N as a mixture of ammonium sulfate and ammonium phosphates was applied by row placement (cover depth, 3 cm) at a rate of 100 kg N ha−1 as NH4–N. The study period was divided into the first-half, beginning after the compost application (CCM period), and the second-half, beginning after the chemical fertilizer application (CF period). The mean air concentrations of NH3 and pNH4 (1.5 m height) were 7.6 and 3.0 μg N m−3, respectively, in the CCM period; the values were 3.7 and 3.9 μg N m−3, respectively, in the CF period. The composition ratios of NH3 to the sum of NH3 and pNH4 (1.5 m height) were 72% and 49% in the CCM and CF periods, respectively. The NH3 volatilization loss from the compost was 0.8% of the applied T-N (or 9.3% of the applied NH4–N) and that from the chemical fertilizer was near zero. Excluding the period immediately after the compost application, the upland field acted as a net sink for NH3 and pNH4.  相似文献   

4.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   

5.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

6.
Long-term monitoring of PO4−3 behaviour in a well-defined septic system plume on calcareous sand (Cambridge site) shows that, after 17 yr of system operation, a distinct PO4−3 plume (PO4−3−P > 1 mg L−1) is present extending 20 m downgradient from the infiltration bed. The PO43− plume migration velocity is 1 m yr−1, reflecting retardation by a factor of 20 compared to the groundwater velocity. During monitoring between years 10 to 17, an expanding steady-state zone was noted below the infiltration bed where PO43− −P levels remained consistently near 4 mg L−1, a value 25% lower than the average effluent value (6.3 mg L−1). The pattern of attenuation — a 25% mass loss in the 2-m-thick vadose zone, then little further attenuation along the flowpath — is suggestive of a condition of equilibrium with a controlling phosphate mineral phase. Chemical equilibrium modelling shows supersaturation with respect to hydroxylapatite and variscite. Four other field sites are identified from the literature and from our work where similar steady-state PO43− zones are present in septic system plumes. In these, steady-state levels range from 15% to 68% of effluent values, with lower concentrations observed in the more acidic plumes, again indicative of a mineral solubility control, possibly variscite.PO43− behaviour in these plumes suggests that, although P migration velocity is controlled by the processes of sorption, the magnitude of PO43− that is present is governed by the constraints of phosphate mineral solubility. When septic systems on sands are located relatively close to sensitive surface water bodies and when long-term downgradient impact is the primary concern, more attention should be focused on the geochemical conditions that control PO43− mineral solubility rather than only on the sorption characteristics of the sediment.  相似文献   

7.
This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM10 and PM2.5 increased with increasing load. The LPNE was 3.5 mg tire−1 km−1 for a two wheeler and 6.4 mg tire−1 km−1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM10 and PM2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM10 was present below 1 μm. The number as well as mass size distribution for PM10 was observed to be bi-modal with peaks at 0.3 μm and 4–5 μm. The NE emissions did not show any significant trend with change in tire pressure.  相似文献   

8.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   

9.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

10.
PM2.5 and PM10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM2.5 concentrations ranged from 32 to 70 μg m−3 while that of PM10 did so from 51 to 132 μg m−3. The most abundant chemical species for both PM fractions were: OC, EC, SO42−, NO3, NH4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM2.5 than for PM10, and did not display significant differences during the sampling period. The PM2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.  相似文献   

11.
12.
Groundwater provides about 30% of water requirements in Ontario, but farm families depend almost entirely on private wells. Major potential contaminants on farms are nitrate (NO3), pathogenic microorganisms, pesticides and petroleum derivatives. A survey of farm drinking-water wells was conducted throughout the Province of Ontario, Canada, in 1991 and 1992 and tested for these contaminants. The main objectives of the survey were to determine the quality and safety of drinking water for farm families, and determine the effect of agricultural management on groundwater quality at a provincial scale. Four farm wells were chosen in each township where >50% of the land area was used for agricultural production. Elsewhere one well per township was usually sampled. Within each township the types of farming activity and dominant soils were additional criteria for selection. The network comprised 1292 of the estimated 500,000 water-wells in Ontario, and the study conformed to a stratified random survey. A subset of 160 wells, chosen by farm type, soil, and the presence or absence of a fuel storage tank, was investigated for the presence of petroleum derivatives: benzene, toluene, ethyl benzene, and xylene. About 40% of farm wells tested contained one or more of the target contaminants above the maximum acceptable concentration; 34% of wells had more than the maximum acceptable number of coliform bacteria, 14% contained NO3-N concentrations above 10 mg l−1 limit and about 7% were contaminated with both bacteria and NO3. Only six wells contained pesticide residues above the interim maximum acceptable concentration (IMAC), but pesticides were detected in 7% of wells in winter and in 11% in summer. No wells contained detectable petroleum derivatives. These results for NO3 contamination were not significantly different from those reported for a survey of Ontario wells for the period 1950–1954, but the frequency of contamination by Escherichia coli was greater in the present study. None of the point sources investigated contributed significantly to the NO3 contamination. The percentage of wells contaminated by coliform bacteria decreased significantly with increasing separation of the well from the feedlot or exercise yard on livestock farms. A full statistical model including the type of well construction, depth, age and soil hydrologic group was developed to describe the frequency of NO3 contamination.  相似文献   

13.
In order to investigate the air quality and the abatement of traffic-related pollution during the 2008 Olympic Games, we select 12 avenues in the urban area of Beijing to calculate the concentrations of PM10, CO, NO2 and O3 before and during the Olympic traffic controlling days, with the OSPM model.Through comparing the modeled results with the measurement results on a representative street, the OSPM model is validated as sufficient to predict the average concentrations of these pollutants at street level, and also reflects their daily variations well, i.e. CO presents the similar double peaks as the traffic flow, PM10 concentration is influenced by other sources. Meanwhile, the model predicts O3 to stay less during the daytime and ascend in the night, just opposite to NO2, which reveals the impact of photochemical reactions. In addition, the predicted concentrations on the windward side often exceed the leeward side, indicating the impact of the special street shape, as well as the wind.The comparison between the predicted street concentrations before and during the Olympic traffic control period shows that the overall on-road air quality was improved effectively, due to the 32.3% traffic flow reduction. The concentrations of PM10, CO and NO2 have reduced from 142.6 μg m−3, 3.02 mg m−3 and 118.7 μg m−3 to 102.0 μg m−3, 2.43 mg m−3 and 104.1 μg m−3. However, the different pollutants show diverse changes after the traffic control. PM10 decreases most, and the reduction effect focusing on the first half-day even clears the morning peak, whereas CO and NO2 have even reductions to minify the daily fluctuations on the whole. Opposite to the other pollutants, ozone shows an increase of concentration. The average reduction rate of PM10, CO, NO2 and O3 are respectively 28%, 19.3%, 12.3% and −25.2%. Furthermore, the streets in east, west, south and north areas present different air quality improvements, probably induced by the varied background pollution in different regions around Beijing, along with the impact of wind force. This finding suggests the pollution control in the surrounding regions, not only in the urban area.  相似文献   

14.
The interaction of N2O5 with dispersed samples of Arizona Test Dust (ATD), Calcite (CaCO3) and quartz (SiO2) was investigated at varying relative humidity using an aerosol flow reactor. Reactive uptake coefficients, γ, obtained at close to zero relative humidity were (4.8 ± 0.7) × 10−3 for CaCO3, (8.6 ± 0.6) × 10−3 for Quartz and (9.8 ± 1.0) × 10−3 for ATD. In the case of calcite, evidence was obtained for an enhanced rate of uptake at relative humidities above ≈ 50%. The results are compared to literature values obtained using bulk substrates and to previous aerosol uptake data on Saharan dust.  相似文献   

15.
In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO3 contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km2 area of Texas suggest that reduction during recharge limits NO3 loading to ground water. Tritium and Cl concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO3–N suggest denitrification, but O2 concentrations ≥3.24 mg l−1 indicate that NO3 reduction in ground water is unlikely. The presence of denitrifying and NO3-respiring bacteria in cores, typical soil–gas δ15N values <0‰, and decreases in NO3–N/Cl and SO42−/Cl ratios with depth in cores suggest that reduction occurs in the upper vadose zone beneath playas. Reduction may occur beneath flooded playas or within anaerobic microsites beneath dry playas. However, NO3–N concentrations in ground water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.  相似文献   

16.
Leaching of nitrate contributes to the deterioration of groundwater and can consequently have a negative influence on the quality of our drinking water. Critical threshold values for nitrogen leaching are established to preserve groundwater quality. A critical threshold value for nitrate leaching of 50 mg 1−1 (11.3 mg N 1−1), similar to the drinking water standard, serves as a threshold value for European countries. However, the temporal aggregation scale on which this threshold value should be considered is unknown. A well tested simulation model was used to evaluate the exceedance of the threshold value at different time aggregation levels, ranging from one day till 30 yr. For three different soil structure types within one soil type and a selected fertilisation regime, the aggregated nitrogen leaching over 30 yr was 11.4, 19.2 and 10.6 mg 1−1. Considering an aggregation level of one day, the critical threshold value of 11.3 mg N 1−1 was exceeded 2973, 5801 and 2556 times, respectively, for the three structure types during 30 yr. By considering other time aggregation levels, a clear relation resulted between time aggregation level and the number of time elements during which the critical level was exceeded. Results strongly indicate that a critical threshold value for leaching should include an associated time-aggregation level.  相似文献   

17.
Amorphous ferric oxyhydroxide is being used to treat groundwater contaminated with uranium(VI); the compound also has potential for use as a component in in situ chemical barriers. To quantitatively evaluate its effectiveness in such applications, adsorption of uranium(VI) onto amorphous ferric oxyhydroxide was experimentally investigated under a wide range of uranium(VI) (8.40·10−7−2.10·10−3 mol L−1; 0.2–500 mg L−1), sulfur(VI) (0–0.07 mol L−1; 0–2240 mg L−1) and carbon(IV) (0–0.0195 mol L−1; 0–234 mg L−1) concentrations, and pH-values (4–9.6). The adsorption behavior of uranium(VI) (uranyl ion and its complexes) is similar to that of other cations; it exhibits a sharp rise in the extent of adsorption with increasing pH. Interactions among uranyl complexes and surface sites are interpreted using a site complexation model. Although the model does not incorporate electrostatics and includes only a single type of adsorption site, it provides a reasonable match to measured adsorption and proton exchange data. The simplicity of the model and the resulting reduction in computational demand allow its efficient incorporation into coupled reaction-transport models.  相似文献   

18.
To determine the mobility of colloids (0.001–0.45 μm) and suspended particles (> 0.45 μm) in granite fractures, laboratory particle-migration and conservative tracer studies have been carried out in a natural fracture within a large granite block, with overall dimensions of 83×90×60 cm. Flow fields within this horizontal fracture were controlled through a set of 9 boreholes drilled orthogonally to the fracture. Laboratory experiments were performed using a range of average water velocities which contained values low enough to closely approximate the natural flow velocities of < 2 m yr−1 in plutonic rocks of the Canadian Shield. The particles used had diameters between 0.02 and 22 μm, and included latex spheres, glass spheres and colloidal silica. Migration experiments were carried out with a filtered groundwater, ionic strength of 0.01 mol kg−1, obtained from a granite fracture within the Whiteshell Research Area of Manitoba. Flushing experiments showed that suspended particles as large as 40 μm could be mobilized from the fracture surface. The mobility of suspended particles was significantly less than that of colloids. However, within the size range of colloids used in these studies (0.022–0.090 μm), colloid size did not affect colloid migration. Although, in general, colloids eluted ahead of the conservative tracer, colloid mobility was significantly reduced when the average groundwater velocity dropped below between 32 and 240 m yr−1. Colloid transport was found to be very sensitive to flow path and flow direction.  相似文献   

19.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   

20.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号