首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0–10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements.  相似文献   

2.
ABSTRACT

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg?1, which is lower than in coals from this region (6.2 mg kg?1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5–20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.

IMPLICATIONS This work was carried out to analyze the pollution situation and environmental distribution of Sb in three important mines in Anhui Province of China. A detailed concentration analysis of Sb was used to indicate the anthropogenic source of human operation such as coal mining and depositing, coal cleaning, and electricity generation by coal power plants in the mine region. The investigation provides special useful information on the environmental behavior characteristics of Sb for environmental scientists and policy-makers.  相似文献   

3.
To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings.  相似文献   

4.
Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (∼900, 200 and 500 mg kg−1, respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils.  相似文献   

5.
The objective of this study was to determine the As and Sb contents in soils from the Murcia Region of Spain and the possible relationship between the mineralogical composition, soil properties, and As and Sb concentrations. In this study, 490 samples were selected from areas with different characteristics in order to study As and Sb variability. Results show that As and Sb concentrations are positively correlated with the phyllosilicate and quartz content but negatively correlated with the calcite content. The generic reference level (GRL) for these elements was determined according to the Spanish legislation. Established GRL values vary according to the established mineralogical groups, suggesting that GRL has to be determined considering the lithological characteristics of the study area.  相似文献   

6.
Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg(-1), which is lower than in coals from this region (6.2 mg kg(-1)). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.  相似文献   

7.
The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1M) extractable Sb from the shooting range (8300 microg kg(-1)) and the apple orchard (69 microg kg(-1)) had considerably higher surface Sb levels than the control site (<1.5 microg kg(-1)), and Sb was confined to the top approximately 30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas.  相似文献   

8.
Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was <10 % total soil-borne As with concentrations less than the current Australian maximum residue concentration for cereals. The results indicate that risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75?±?0.52 μg L–1) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was <7 % for total As and <3 % total Sb which is important to consider when estimating the real risk from soil borne As and Sb in the floodplain environment.  相似文献   

9.
Elevated levels of bioavailable As in mining soils, agricultural areas and human habitats may cause potential toxicity to human health, plants and microbe. Therefore, it is essential to determine proper soil chemical extraction method in order to estimate plant-available As in mining soils and protect agricultural and environmental ecosystems by evaluation of environmental risk and implementation of remediation measures. In this study, six single soil chemical extraction processes and four-step sequential chemical extraction protocol were used to determine the relative distribution of As in different chemical forms of soils and their correlations with total As in plants grown in mining areas and greenhouse experiments. The strongest relationship between As determined by single soil chemical extraction and As in plant biomass was found for sodium acetate and mixed acid extractant. The mean percent of total As extracted was: ammonium oxalate (41%)>hydroxylamine hydrochloride (32%)>mixed acid (16%)>phosphate (6%)>sodium acetate (1.2%)>water (0.13%). This trend suggests that most of the As in these soils is inside the soil mineral matrix and can only be released when iron oxides and other minerals are dissolved by the stronger chemical extractant. Single soil chemical extraction methods using sodium acetate and mixed acids, that extract As fractions complexed to soil particles or on the surface of mineral matrix of hydrous oxides of Fe, Mn and Al (exchangeable+sorbed forms) can be employed to estimate and predict the bioavailable As fraction for plant uptake in mining affected soils. In sequential chemical extraction methods, ammonium nitrate and hydroxylamine hydrochloride may be used to provide closer estimates of plant-available As in mining soils.  相似文献   

10.
Knowledge of trace element concentrations and mobility is important in the ecotoxicological assessment of contaminated soils. We analysed soil pore water under field conditions to provide new insights into the mobility of residual contaminants in the surface 50cm of a highly contaminated woodland soil. Cadmium and Zn were highly mobile in the acidic soil, concentrations increasing with depth in soil pore water, showing considerable downward mobility. High levels of surface organic matter restricted the solubility of Cu, Pb and Sb, with highest concentrations being found close to the surface. Dissolved organic carbon in pore water had a strong influence on mobility of Cu, Zn, Pb and Sb. Elevated As had moved from the organic surface horizons but was largely immobilised in deeper layers and associated with Fe and Al oxides. The measured differential mobility of pollutants in the present study is highly relevant to protection of groundwater and other receptors.  相似文献   

11.
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.  相似文献   

12.
Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg−1), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg−1), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg−1) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH)6]2, controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content.  相似文献   

13.
Forest/tilled soils and stream sediments from the highly polluted mining and smelting district of Príbram, Czech Republic, were subjected to single extraction procedures in order to determine the available contents of Sb and As. The results obtained from five widely-used 2-h single extraction tests were compared: deionised water, 0.01M CaCl(2), 1M NH(4)NO(3), 0.005M diethylentriaminpentaacetic acid (DTPA) and 0.1M Na(2)HPO(4). The ICP-MS determinations of Sb and As in the extracts were coupled with measurements of pH and Eh and geochemical modelling (PHREEQC-2) to determine their speciation in extracts and possible solubility-controlling phases. According to the speciation calculations, Sb in extracts was present mainly as Sb(V) with the exception of the DTPA extracts from highly organic and acidic forest soils, where Sb(III) species accounted for up to 34% of total Sb speciation. The highest extractabilities were observed for the 0.1M Na(2)HPO(4) solution (up to 9% of the total Sb and up to 34% of the total As concentration). The other extracting media yielded statistically the same results (p<0.05) with Sb extractabilities below 2% and As extractabilities below 8%. Thus, simple deionised water and 0.1M Na(2)HPO(4) extractions are preferred for quick estimates of easily-exchangeable and specifically-sorbed Sb, respectively.  相似文献   

14.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

15.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals—As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

16.
Enchytraeids are typical inhabitants of many soils, contributing to vital processes of this environmental compartment. Indirectly they are involved in regulating the degradation of organic matter, as well as improving the pore structure of the soil. Due to their behaviour, they are able to avoid unfavourable environmental conditions. Avoidance tests with enchytraeids, initially developed with earthworms by several authors, are quick and easy to perform. With these tests a first assessment of the toxicity of a (contaminated or spiked) soil is possible in just 48 h by using the reaction of the enchytraeids as measurement endpoint. In this period of time the organisms can choose between the control soil and the other soil (a contaminated or spiked or another soil with different physico-chemical properties). In the tests reported here, the enchytraeids were exposed to control soils spiked with the fungicides Benomyl and Carbendazim and the herbicide Phenmedipham. Several chemical concentrations were tested in order to evaluate the avoidance behaviour to toxic substances. In fact, often these short-term screening tests gave results showing avoidance at concentrations in a range similar to the acute test results but, higher than in chronic tests. Further tests are needed to decide whether the results gained in this study can be extrapolated to other chemicals. It is proposed to standardize the Enchytraeid Avoidance Test as it is currently done for the Earthworm Avoidance Test by the International Standard Organization (ISO).  相似文献   

17.
This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier’s scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe–Mn oxide bound fraction of Tessier’s scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier’s scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier’s scheme. The order of mobility of PTE was as follows: Cd?>?Zn?>?Pb in MDN site and As?>?Sb?>?Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.  相似文献   

18.
Antimony (Sb) distribution, solubility and mobility onto natural soils of China were studied in lysimeter and batch experiments as a function of physicochemical properties of the soil. An outdoor lysimeter experiment investigated the leaching and migration of Sb in the soils with Sb-polluted topsoil and unpolluted subsoil over a 5 month period. Soil solutions were collected by suction cups installed at different depth of lysimeters, and leachates were regularly collected and analyzed for Sb concentrations. The majority of the added Sb was retained in the topsoil layers, but small portions were moved to the sub-layers. Sb concentrations in the soil solutions and leachates ranged from 0–755.5 (6.38 ± 54 on average) μg l−1 and 0–0.45 (smaller than the detection limit) μg l−1 respectively, indicating the low solubility of Sb in the soils. Batch experiments were performed in order to determine the sorption capacity and the partition coefficient (Kd). Freundlich isotherm described properly the equilibrium experimental data and results show that the Kd values for Primosol, Isohumosol, Ferrosol equal to 22.5, 87.8, 704 L kg−1, respectively. These results showed the strong capacity of the soils to retain Sb, and prevent it being leached down the profile. The mobilizable Sb was in the order: Primosol > Isohumosol > Ferrosol. Sb migration in the soils was mainly associated with the exchangeable, carbonate-bound, and metal–organic complex-bound fractions. Health risk assessment indicates that Sb leaching from Ferrosol will not harm to human health through groundwater under the test conditions, while it has certain health risks from the Isohumosol and Primosol.  相似文献   

19.
Mamy L  Barriuso E 《Chemosphere》2005,61(6):844-855
Use of glyphosate resistant crops was helpful in addressing observed increases in environmental contamination by herbicides. Glyphosate is a broad-spectrum herbicide, and its behaviour-as well as that of other herbicides-in soils is an important consideration for the overall environmental evaluation of genetically resistant crop introduction. However, few data have been published comparing glyphosate behaviour in soil to that of the herbicides that would be replaced by introduction of glyphosate resistant crops. This work compares glyphosate adsorption in soil with that of other herbicides frequently used in rape (trifluralin and metazachlor), sugarbeet (metamitron) and corn (sulcotrione). Herbicide adsorption was characterised in surface soils and in the complete soils profiles through kinetics and isotherms using batch equilibration methods. Pedological and molecular structure factors controlling the adsorption of all five herbicides were investigated. Glyphosate was the most strongly adsorbed herbicide, thus having the weakest potential for mobility in soils. Glyphosate adsorption was dependent on its ionisable structure in relation to soil pH, and on soil copper, amorphous iron and phosphate content. Trifluralin adsorption was almost equivalent to glyphosate adsorption, whereas metazachlor, metamitron and sulcotrione adsorption were lower. Trifluralin, metazachlor and metamitron adsorption increased with soil organic carbon content. Sulcotrione was the least adsorbed herbicide in alkaline soils, but its adsorption increased when pH decreased. Ranking the adsorption properties among the five herbicides, glyphosate and trifluralin have the lowest availability and mobility in soils, but the former has the broadest spectrum for weed control.  相似文献   

20.
《Chemosphere》2011,82(11):1549-1559
Harmful effects of potentially toxic elements (PTE’s) in soils relate to their geochemically reactive fraction. To assess the degree of the reactivity, specific extractions or models are needed. Here we applied a 0.43 M HNO3 chemical extraction to assess reactive pools of a broad range of PTE’s in 136 contaminated and non-contaminated soils. Furthermore we derived Freundlich-type models based on commonly available soil properties (pH, organic carbon and clay) as well as extended models that used other properties such as amorphous Al and Fe oxides and evaluated their possible use in risk assessment.The approach allowed to predict the reactivity of As, Hg, Co, U, Ba, Se, Sb, Mo, Li, Be (r2: 0.55–0.90) elements not previously included in such studies, as well as that of Cd, Zn, Cu, Pb, Ni and Cr (r2: 0.73–0.90). The inclusion of pH, organic carbon and clay improved the performance of all models except for Be and Mo, although the role of clay is not completely clear and requires further investigation. The ability of amorphous metal oxides to affect the reactivity of As, Hg, Cu, Ni, Cr, Sb, Mo and Li was expressed by the models in agreement with known geochemical processes leading to the retention of PTE’s by the solid matrix. Hence, such approach can be a useful tool to account for regional differences in soil properties during the identification of risk areas and constitute a significantly more powerful tool than the analysis of total pools of PTE’s in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号