首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
The purpose of this study was to investigate the nitrification and nitrogen removal from centrate produced in the dewatering process of anaerobically digested sludge, using a single-unit, single-zone submerged attached-growth bioreactor. The nitrogen loading varied from 0.54 to 1.51 kg-N/m3 x d. Stable ammonia oxidation (nitritification) to nitrite was demonstrated. A nitritification efficiency of 98% was achieved, while the denitrification efficiency varied from 84 to 99% (with methanol). The average total nitrogen removal was 85%. Inhibition of nitrite oxidation by a limited penetration of dissolved oxygen into the biofilm and free ammonia resulted in the accumulation of nitrite, while inhibition of ammonia oxidation by free nitrous acid did not occur. The quantity of biomass, in terms of volatile solids, ranged from 10123 to 16034 mg-VS/L of media.  相似文献   

2.
在连续流生物膜反应器中通过控制DO、pH和HRT,对低氨氮浓度废水进行了亚硝化的实验研究。结果表明,在进水氨氮浓度为35~45 mg/L,温度为34℃的情况下,当DO=1.4~1.5 mg/L,pH=8.3,HRT=6 h时,氨氮的去除率与亚硝态氮的积累率均可达到80%左右,实现了较好的氨氮降解及稳定的亚硝态氮的积累。  相似文献   

3.
A mathematical model based on Activated Sludge Model No. 3 (International Water Association, London) and laboratory-scale experiments were used to investigate ammonia conversion by nitrification in a sequencing batch reactor (SBR). The purpose of the study was to assess the effect of dissolved oxygen concentration on nitrite accumulation in the SBR. As the dissolved oxygen concentration in the SBR depends on the balance between oxygen consumption and oxygen transfer rates, ammonium conversion was measured for different air flowrate values to obtain different dissolved oxygen concentration profiles during the cycle. The ammonia concentration in the feeding medium was 500 mg ammonium as nitrogen (N-NH4(+))/L, and the maximum nitrite concentration achieved during a cycle was approximately 50 mg nitrite as nitrogen (N-NO2)/L. The air flow supplied to the reactor was identified as a suitable parameter to control nitrite accumulation in the SBR. This identification was carried out based on experimental results and simulation with a calibrated model. At a low value of the volumetric mass-transfer coefficient (kLa), the maximum nitrite concentration achieved during a cycle depends strongly on k(L)a, whereas, at a high value of k(L)a, the maximum nitrite concentration was practically independent of kL(a).  相似文献   

4.
This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon addition (methanol). With influent ammonia and total Kjeldahl nitrogen ranging from 537 to 968 mg/L and 643 to 1510 mg/L, respectively, 85% nitrogen removal was obtained, and effluent was dominated by nitrite (NO2-/NOx > 0.95). Nitrifying community analysis using fluorescence in situ hybridization (FISH), with a hierarchical set of probes targeting known ammonia-oxidizing bacteria (AOB) within beta-proteobacteria, showed that the AOB community of the biofilter consists almost entirely of members of the Nitrosomonas europaea/eutropha and the Nitrosococcus mobilis lineages. Image analysis of FISH pictures was used to quantify the identified AOB, and it was estimated that Nitrosomonas europaea/eutropha-like AOB accounted for 4.3% of the total volume of the biofilm, while Nitrosococcus mobilis-like AOB made up 1.2%; these numbers summed up to a total AOB fraction of 5.5% of the total volume on the biofilm. Nitrite-oxidizing bacteria (NOB) were not detectable in the biofilm samples with probes for either Nitrospira sp. or Nitrobacter sp., which indicated that NOB were either absent from the biofilters or present in numbers below the detection limit of FISH (< 0.1% of the total biofilm). Nitrite oxidizers were likely outcompeted from the system because of the free ammonia inhibition and the possibility that the aeration period (from intermittent aeration) was not sufficiently long for the NOB to be released from the competition for oxygen with heterotrophs and AOB. The nitrogen removal via nitrite in a SAGB reactor described in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes.  相似文献   

5.
低C/N比水产养殖废水生物脱氮实验研究   总被引:5,自引:1,他引:4  
随着短程硝化-反硝化理论研究的发展,在低C/N比条件下,实现污水的生物脱氮处理已成为可能。为此,设计了水产养殖用水的三级生物膜短程硝化-反硝化处理工艺,并对该工艺在去除模拟水产养殖废水主要污染物的作用进行了初步研究。研究结果表明,在进水pH值7.5~8.5,温度为28~32℃,溶解氧为0.5~1 mg/L,游离氨浓度为5~10 mg/L的条件下,模拟废水的COD、NH4+-N和TN的平均去除率分别达到94.4%、91.6%和70.1%;并且低C/N比对出水氨氮NH4+-N的去除率影响不大,NO2--N的平均浓度控制在5.2 mg/L以下,低于鱼类的耐受浓度。表明该短程硝化-反硝化工艺设计,可用于低C/N比水产养殖废水主要污染物的生物处理,尤其是可消除NO2--N对水产养殖的潜在威胁,基本达到养鱼回用标准。  相似文献   

6.
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.  相似文献   

7.
Nitrous oxide (N2O), a strong greenhouse gas, can be produced by ammonium-oxidizing bacteria (AOB) as a by-product of ammonium oxidation and can potentially be formed in all types of nitrification processes. However, partial nitritation has been reported to cause significantly higher N2O emissions than complete nitrification. In the study presented here, the mechanisms and factors that drive N2O formation by AOB were investigated with respect to different operational strategies to achieve nitrite accumulation base on combined evaluation of oxygen uptake rate (OUR) and N2O formation rate. On the one hand, N2O formation during partial nitritation and nitrification in a continuously stirred tank reactor (CSTR) with continuous aerobic conditions was observed. On the other hand, the effect of intermittent aeration on N2O formation during nitrification was investigated. The presence of nitrite, the extend of sludge-specific ammonium loading, low oxygen concentration, and transition from aerobic to anoxic conditions significantly increased N2O formation in this reactor independently from each other, indicating that different formation pathways, supposedly via nitrite or hydroxylamine, were active.  相似文献   

8.
温度对哑硝化及氧化哑氮释放的影响   总被引:1,自引:0,他引:1  
采用批次实验的方法探讨了3种不同温度(15℃,25℃,35℃)对亚硝化及其过程中温室气体氧化亚氮释放情况。结果表明,温度对亚硝化过程及氧化亚氮的释放有显著影响。在15~35℃范围内,随着温度的升高,氨氧化率和亚硝化积累率逐渐升高,N2O释放量也逐渐增大,35℃可以作为适宜的亚硝化温度,平均氨氧化率为50.9%,亚硝化积累率为55.6%,NO-2-N与Nrl4-N出水浓度比为1.1,氨氧化率,亚硝化积累率和出水中亚硝氮与氨氮浓度比较合适,从而可以为厌氧氨氧化工艺提供合适的进水,但在此温度下平均N2O释放量相对较高,为1.494la,g/gMLSS。  相似文献   

9.
Nitritation (ammonium to nitrite) as a pre-treatment of Anammox (anaerobic ammonium oxidation) is a key step for an energy-efficient nitrogen-removal alternative from dilute wastewaters, e.g. anaerobically-treated sewage, with which limited study has achieved sustainable nitritation at ambient temperature and short hydraulic retention times. To this end, pH-gradient real-time aeration control in an oxygen-based membrane biofilm reactor was observed at 20 °C in the sequencing batch mode. An optimum oxygen supply via diffusion for ammonium-oxidizing bacteria (AOB) was established, but nitrite-oxidizing bacteria (NOB) could be inhibited. The system achieved nitrite accumulation efficiencies varying from 88% to 94% with the aeration control. Mass balance and rate performance analyses indicate that this aeration control is able to supply an oxygen rate of 1.5 mol O2 mol?1 ammonium fed, the benchmark oxygenation rate based on stoichiometry for nitritation community selection. Microbial analyses confirmed AOB prevalence with NOB inhibition under this aeration control.  相似文献   

10.
Degradation of acid orange 7 in an aerobic biofilm.   总被引:6,自引:0,他引:6  
A stable microbial biofilm community capable of completely mineralizing the azo dye acid orange 7 (AO7) was established in a laboratory scale rotating drum bioreactor (RDBR) using waste liquor from a sewage treatment plant. A broad range of environmental conditions including pH (5.8-8.2), nitrification (0.0-4.0 mM nitrite), and aeration (0.2-6.2 mg O2 l(-1)) were evaluated for their effects on the biodegradation of AO7. Furthermore the biofilm maintained its biodegradative ability for over a year while the effects of these environmental conditions were evaluated. Reduction of the azo bond followed by degradation of the resulting aromatic amine appears to be the mechanism by which this dye is biodegraded. Complete loss of color, sulfanilic acid, and chemical oxygen demand (COD) indicate that AO7 is mineralized. To our knowledge this is the first reported occurrence of a sulfonated phenylazonaphthol dye being completely mineralized under aerobic conditions. Two bacterial strains (ICX and SAD4i) originally isolated from the RDBR were able to mineralize, in co-culture, up to 90% of added AO7. During mineralization of AO7, strain ICX reduces the azo bond under aerobic conditions and consumes the resulting cleavage product 1-amino-2-naphthol. Strain SAD4i consumes the other cleavage product, sulfanilic acid. The ability of the RDBR biofilm to aerobically mineralize an azo dye without exogenous carbon and nitrogen sources suggests that this approach could be used to remediate industrial wastewater contaminated with spent dye.  相似文献   

11.
Mechanisms of nitrite accumulation occurring in soilnitrification   总被引:1,自引:0,他引:1  
Shen QR  Ran W  Cao ZH 《Chemosphere》2003,50(6):747-753
Because low concentration of nitrite could be toxic to biological systems and high amounts of nitrite have been observed in a river of northern China since 1990, nitrite from agricultural soil sources should be investigated. In this paper, effects of levels of ammonium-N (NH4+-N), soil pH and nitrification inhibitors on NO2- accumulation, and duration of nitrite in soils were studied. Application of 11.2 mg of nitrapyrin kg(-1) soil or 11.2 mg of sodium azide kg(-1) soil dramatically suppressed nitrite occurrence. Within all incubation times and at all levels of ammonium-N input, we did not detect any measurable NO2-N accumulation in samples of Yellow-brown earth (pH 5.67), but observed huge accumulation in the 2 alkaline soils, Fluvo-aquic loam (pH 7.89) and Fluvo-aquic sand (pH 8.20). The concentrations of nitrite in both alkaline soils were related to ammonium-N levels. The effect of pH on nitrite accumulation was demonstrated by using slurries of Fluvo-aquic sand under continuous aeration and buffers of different pH. Data showed that nitrite concentration increased with the elevated pH, yet that ammonia oxidizers from the original soil (pH 8.2) could adapt to the new medium of low pH (pH 5.35). Dynamic changes of nitrite in soils amended with different rates of nitrite-N were also measured in 6 days. Thereby, we concluded that nitrite was unstable in acid soils, but durable in alkaline soils. The authors suggested that NO2- accumulation in field soils and its subsequent environmental impact should receive more attention.  相似文献   

12.
Gong Z  Yang F  Liu S  Bao H  Hu S  Furukawa K 《Chemosphere》2007,69(5):776-784
A laboratory-scale membrane-aerated biofilm bioreactor (MABR) equipped with non-woven fabrics support around the gas-permeable carbon tube was developed for single-stage autotrophic nitrogen removal based on partial nitrification and anaerobic ammonium oxidization. This reactor allowed air to be supplied through the microporous carbon tube wall to the biofilm that was supported by non-woven fabrics. The partial nitrification and consumption of dissolved oxygen occurred in the inner layer and Anammox in the anoxic outer layer of the non-woven fabrics, thus realizing autotrophic nitrogen removal in a single reactor. After 116d of operation, the maximal nitrogen removal of 0.77kgNm(-3)d(-1) at a volumetric ammonium loading rate of 0.87kgNm(-3)d(-1) was achieved. The spatial profiles of the ammonia-oxidizing bacteria and Anammox bacteria were evaluated by fluorescence in situ hybridization. This study demonstrated that MABR was a very suitable experimental set-up for the operation of the single-stage autotrophic nitrogen removal process.  相似文献   

13.
通过控制好氧区低DO浓度以及缩短好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2/O工艺中,成功启动并维持了短程硝化反硝化;系统亚硝酸盐积累率稳定维持在90%左右,氨氮去除率在95%以上。通过提取富集氨氧化菌(ammonia oxidizing bacteria,AOB)的基因组DNA,经两次常规PCR扩增和琼脂糖凝胶电泳,以纯化回收的DNA扩增片段作为实时荧光定量PCR检测AOB数量的DNA标准品,建立了检测AOB数量的实时荧光定量PCR标准曲线。利用实时荧光定量PCR技术比较了A2/O系统在不同运行条件及亚硝酸盐积累率情况下AOB菌群数量。结果表明,随着系统亚硝酸盐积累率的上升,系统内AOB菌群数量也大幅上升。全程硝化和短程硝化时,系统内的AOB菌群数量分别为5.28×109cells/g MLVSS和3.95×1010cells/g MLVSS。此外,亚硝酸盐积累率的下降相对于AOB菌群数量的下降有一定的滞后性。  相似文献   

14.
阐述了污水低氧脱氮的基本原理,即抑制或去除亚硝酸盐氧化菌(NOB),同时保留氨氧化菌(AOB),并保持其活性;探讨了污水低氧脱氮实现途径;详细介绍了几种典型的污水低氧脱氮工艺(短程硝化(SHARON)工艺、厌氧氨氧化(ANAMMOX)工艺、好氧反氨化(DEMON)工艺、低氧自养硝化反硝化(OLAND)工艺、甲烷营养型硝化反硝化工艺和亚硝酸盐型完全自养脱氮(CANNON)工艺)的应用研究进展;最后对污水低氧脱氮处理工艺的工程运用进行了展望.  相似文献   

15.
有机负荷对膜-生物反应器硝化性能的影响   总被引:1,自引:0,他引:1  
采用厌氧动态膜-生物反应器(AnDMBR)组合自养膜-生物反应器(MBR)工艺,研究冬季低温条件下系统的硝化效果以及TP的去除效果,并与单级MBR工艺进行对比。结果表明:(1)AnDMBR对COD的去除率基本保持在50%~60%,AnDMBR组合自养MBR工艺对COD的去除率为80%~85%;单级MBR工艺对COD的去除率为80%左右。(2)总体上,AnDMBR组合自养MBR工艺对NH4+-N的去除率大于95%;单级MBR对NH4+-N的去除效果比AnDMBR组合自养MBR工艺差。(3)AnDMBR组合自养MBR工艺中,出水NO2--N与NO3--N均有积累;单级MBR工艺中,出水NO2--N积累不明显。(4)相对于亚硝酸盐氧化菌(NOB),氨氧化菌(AOB)对有机负荷更敏感,当有机负荷高时,AOB更易受到异养菌活动的抑制;当有机负荷降低、异养菌活性减弱时,AOB活性明显增强,系统的硝化效果得到明显改善。(5)AnDMBR组合自养MBR工艺对TP的去除率高于80%,单级MBR工艺稳定后对TP的去除率仅为20%~30%。(6)从呼吸速率和硝化速率可知,自养MBR的硝化效果优于单级MBR。  相似文献   

16.

Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen. Specifically, Pseudomonas sp. Y-5 removed 103 mg/L of NH4+-N in 24 h without nitrate or nitrite accumulation when NH4+-N was its sole nitrogen source. The NH4+-N removal efficiency (RE) was 97.26%, and the average removal rate (RR) was 4.30 mg/L/h. Strain Y-5 also removed NO3?-N and NO2?-N even in aerobic conditions, with average RRs of 4.39 and 4.23 mg/L/h, respectively, and REs of up to 99.34% and 95.81% within 24 h. When cultured in SND medium (SNDM-1), strain Y-5 achieved an NH4+-N RE of up to 97.80% and a total nitrogen (TN) RE of 93.01%, whereas NO3?-N was fully depleted in 48 h. Interestingly, high nitrite concentrations did not inhibit the nitrification capacity of Y-5 when grown in SNDM-2, the RE of NH4+-N and TN reached 96.29% and 94.26%, respectively, and nitrite was consumed completely. Strain Y-5 also adapted well to high concentrations of ammonia (~401.68 mg NH4+-N/L) or organic nitrogen (~315.12 mg TN/L). Our results suggested that Pseudomonas sp. Y-5 achieved efficient simultaneous nitrification and denitrification, thus demonstrating its potential applicability in the treatment of nitrogen-polluted wastewater.

  相似文献   

17.
Sequencing batch reactors were acclimated under aerobic and alternating anoxic/aerobic conditions. Greater nitrification rates in the alternating reactor were investigated by comparing environmental conditions. In the alternating reactor, pH, alkalinity, oxygen, and nitrite were higher at the onset of aerobic nitrification. Kinetic studies and batch tests, with biomass developed under aerobic and alternating conditions, revealed that these factors were insufficient to explain the divergent nitrification rates. Nitrifying genera vary in nitrification kinetics and sensitivity to environmental conditions. Nitrosospira and Nitrospira spp. could dominate in aerobic reactors, as they are adapted to low nitrite and oxygen conditions. Nitrosomonas and Nitrobacter spp. are better competitors with abundant substrates and have higher nitrite tolerance, so they could excel under alternating conditions. This theoretical explanation is consistent with the kinetics and environmental conditions in these reactors and argues for using alternating treatment, because the harsh conditions select for populations with inherently faster nitrification rates.  相似文献   

18.
基于全程硝化反硝化的传统生物脱氮工艺在硝化过程中需要大量氧气供应,反硝化过程需要有机物作为碳源,存在能耗与药耗过大的问题.为了降低废水脱氮的成本,短程硝化(PN)—厌氧氨氧化(ANAMMOX)组合工艺(PNA工艺)得到了高速发展.综述了PNA工艺的影响因素,重点介绍了4种基于PN与ANAMMOX原理开发的衍生PNA工艺...  相似文献   

19.
研究了粉末活性炭(PAC)作为载体的膜生物反应器(MBR)处理吹脱后垃圾渗滤液的硝化性能.在HRT=3 d、NH 4-N=200~500 mg/L条件下,进水pH>8.7时,PAC-MBR和没有添加PAC的普通MBR均只能将氨氮转化为NO-2;降低pH至7.6~8.2时,PAC-MBR中的亚硝酸盐氧化菌迅速恢复活性,将NO-2完全转化为硝酸盐,而普通MBR仍然停留在亚硝化阶段;当吹脱取消后,NO-2迅速消失,这可能与取消吹脱后,不再使用大量硫酸进行pH调节有关.研究发现,当SO2-4为3 g/L时,氨氮氧化速度出现了明显的下降,表明SO2-4对硝化菌具有抑制作用;同时,微生物代谢产物(SMP)分泌量越高,NO-2含量越低,但是SMP不是影响NO-2积累的主要原因.  相似文献   

20.
Effects of nano-copper(II) oxide (nano-CuO) and nanomagnesium oxide (nano-MgO) particles on activated sludge endogenous respiration (aerobic digestion), biochemical oxygen demand (BOD) biodegradation, and nitrification were investigated through respiration rate measurement. For comparison, the effects of Cu(II) and Mg(II) ions on activated sludge were also studied. Results indicated that soluble Cu(II) has half maximum inhibitory concentration (IC50) values of 19, 5.5, 53, and 117 mg Cu/L for endogenous respiration, BOD biodegradation, ammonium oxidation, and nitrite oxidation, respectively. However, nano-CuO only inhibited BOD biodegradation at 240 mg Cu/L or more, and its associated toxicity was primarily caused by soluble Cu(II). In contrast, soluble Mg(II) was not toxic to activated sludge in the experimental concentration range, but nano-MgO inhibited BOD biodegradation and nitrification with IC50 values of 70 and 143 mg Mg/L, respectively. Further study indicated that the toxicity of nano-MgO resulted primarily from increased pH following MgO hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号