首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
The kinetics, reaction pathways and product distribution of oxidation of tetrachloroethylene (PCE) by potassium permanganate (KMnO4) were studied in phosphate-buffered solutions under constant pH, isothermal, completely mixed and zero headspace conditions. Experimental results indicate that the reaction is first-order with respect to both PCE and KMnO4 and has an activation energy of 9.3+/-0.9 kcal/mol. The second-order rate constant at 20 degrees C is 0.035+/-0.004 M(-1) s(-1), and is independent of pH and ionic strength (I) over a range of pH 3-10 and I approximately 0-0.2 M, respectively. The PCE-KMnO4 reaction may proceed through further oxidation and/or hydrolysis reaction pathways, greatly influenced by the acidity of the solution, to yield CO2(g), oxalic acid, formic acid and glycolic acid. Under acidic conditions (e.g., pH 3), the further oxidation pathway will dominate and PCE tends to be directly mineralized into CO2 and chloride. Under neutral (e.g., pH 7) and alkaline conditions (e.g., pH 10), the hydroxylation pathway dominates the reaction and PCE is primarily transformed into oxalic acid prior to complete PCE mineralization. Moreover, all chlorine atoms in PCE are rapidly liberated during the reaction and the rate of chloride production is very close to the rate of PCE degradation.  相似文献   

2.
The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 microM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products (cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity (K) of column #1 (low pH+emulsion, K(final)/K(initial)=0.57) and column #2 (live+emulsion, K(final)/K(initial)=0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge+emulsion, K(final)/K(initial)=0.12) and column #4 (soluble substrate, K(final)/K(initial)=0.03) indicating clogging due to biomass and/or gas production can be significant.  相似文献   

3.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

4.
The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO(4)(2-). In the first 400 m downgradient of the source, the plume was confined to the upper 20 m of the aquifer. Further downgradient it widened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward and moved away from the source, O(2) and NO(3)(-) decreased to below detection levels, while dissolved Fe(2+) and SO(4)(2-) increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO(4)(2-). In the same zone, PCE and trichloroethene (TCE) disappeared and cis-1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of (13)C in the daughter products followed by an enrichment of (13)C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ(13)C value confirming that cDCE was not affected by abiotic or biotic degradation. Further downgradient (up to 1900 m), cDCE became enriched in (13)C by up to 8 ‰ demonstrating its further transformation while vinylchloride (VC) concentrations remained low (<1 μg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9 ‰, respectively, the detection of Dehaloccocides sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of (13)C in VC indicates that VC was transformed further, although the mechanism could not be determined. The transformation of cDCE was the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon-chlorine isotope analysis and qPCR combined with traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.  相似文献   

5.
Shi HX  Qu JH  Wang AM  Ge JT 《Chemosphere》2005,60(3):326-333
A new and efficient method for the degradation of microcystins (one family of blue algal toxins) was developed and studied. Microcystins (MCs) in water were directly and effectively removed by active chlorine transformed in situ from the naturally existing Cl- in water resource using electrochemical method. Titanium coated with RuO2 and TiO2 was used as the anode. Microcystin-RR (MCRR) and Microcystin-LR (MCLR) were chosen as the model compounds of MCs. The results suggested that 20.87 mgl(-1) MCs (12.58 mgl(-1) MCRR and 8.29 mgl(-1) MCLR) in aqueous solution with 1.85 mM Cl- could be synchronously decomposed within 15 min electrolysis under the condition of the current density 8.89 mAcm(-2), 20 degrees C and pH 7.00. The qualitative analysis showed that the heptapetide ring and the Adda group of both treated MCs were changed. The results also indicated that the removal rates of both MCs increased with the increasing of chloride concentration and applied current density, but decreased with the increasing of initial concentration of MCs and initial pH of electrolyte. In the absence of Cl-, only a small fraction of both MCs were decomposed by direct anodic oxidation, while their almost complete removals could be obtained in the case of indirect electrooxidation with in situ electrogenerated active chlorine from Cl- in water.  相似文献   

6.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

7.
Manganese-coated activated carbon (MCAC) and activated carbon were used in batch experiments for the removal of cadmium(II) and copper(II). Results showed that uptake of Cd(II) and Cu(II) was unaffected by increases in pH (3.0 to 8.5) or concentration (1 to 20 mg/L). Increased ionic strength (from 0.001 to 1 M NaNO3), however, significantly affected the uptake of Cd(II); adsorption of Cu(II) was not affected. Freundlich adsorption isotherm results indicated that MCAC possessed higher sorption capacity than activated carbon. Second-order rate constants were found to be 0.0386 for activated carbon and 0.0633 g/mg x min for MCAC for Cd(II) and 0.0774 for AC and 0.1223 g/mg x min for MCAC for Cu(II). Column experiments showed that maximum sorption capacity of MCAC was 39.48 mg/g for Cu(II) and 12.21 mg/g for Cd(II).  相似文献   

8.
医疗废弃物焚烧挥发性氯含量与热值测试与估算   总被引:1,自引:1,他引:0  
通过测定上海某医疗废弃物处置公司设定燃烧工况条件下某时间段内烟气中HC l的平均排放速率,估算出上海地区医疗垃圾废物中的可燃烧转化氯含量在2.33%~2.64%左右;通过测定各较小采样时间段(2 m in)的烟气HC l浓度测定发现批次进料造成烟气中HC l浓度近4倍的波动,通过初步的热平衡估算得到医疗废弃物的热值大致在21.8 M J/kg,得到的结果可为我国医疗废弃物的焚烧工艺设计提供基础依据。  相似文献   

9.
Janiak T  Błazejowski J 《Chemosphere》2002,48(10):1097-1102
A method for dechlorination of chloroaromatic compounds at room temperature and atmospheric pressure by an in situ generated––in reaction of Al particles with water––or gaseous hydrogen in alkaline media and the presence of Pd/C catalyst was thoroughly investigated, having in mind its possible application in utilization of organochlorine waste. Conversion degree to dechlorinated compounds depended on the constitution of substrates and ranged between 88% and 96% when in situ hydrogen was used (at substrate (chlorine) to catalyst molar ratio 550:1 and over twofold stoichiometric excess of Al relative to substrate (chlorine); the process lasted ca. 26 h until all Al was consumed), or 90–97% if gaseous hydrogen was purged. Effectiveness of dechlorination was markedly affected by stirring, i.e. size of the stirrer and speed of revolution. Prospects for application of the method described were briefly outlined.  相似文献   

10.
The oxidative photodegradation behaviors of selected three coplanar polychlorinated biphenyls (PCBs), (CB77, CB81, and CB169) using titanium dioxide (TiO(2)) in water were investigated. The main purposes were to clarify the structural relation between the original PCBs and the intermediates derived by TiO(2) oxidation and to evaluate the estrogenic and thyroid hormonal activity in the treated three coplanar PCBs during the oxidative reactions. Approximately 90% of the three coplanar PCBs decomposed within 180 min. Intermediates from the decomposition of the three coplanar PCBs, such as some hydroxylated-PCBs (OH-PCBs), carboxylic intermediates, phenolic intermediates, and other intermediates produced by the cleavage of a benzene ring were identified and quantified. In the degradation pathways, the produced amounts of OH-PCBs increased within 60 min of irradiation time. The estrogenic activity and thyroid hormonal activity of the intermediates from the three coplanar PCBs in water at 0, 60, 120, 180 and 240 min of irradiation time were assessed by using a yeast two-hybrid assay system for human estrogen receptor alpha (hERalpha) and human thyroid hormone receptor alpha (hTRalpha). The maximal estrogenic activities were induced by the solutions of decomposed PCBs with irradiation time at 60-120 min similar and slightly lower than those after the irradiation time. We found that the solutions occuring during the irradiation times of 60-120 min contained several 4-OH-PCBs substituted with OH and Cl at para- and para'-positions having estrogenic activity. The thyroid hormonal activity was not detected in the decomposed three coplanar PCBs solutions.  相似文献   

11.
《Chemosphere》2013,90(11):1302-1306
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   

12.
脱灰煤基活性炭吸附处理含镉废水   总被引:2,自引:0,他引:2  
考察了硝酸脱灰煤样自制活性炭对Cd(Ⅱ)的吸附去除特征。结果表明,随煤样粒径的减小,活性炭的吸附能力增强,吸附过程符合分形动力学特征;随着镉浓度的升高,活性炭对镉的吸附量增加,活性炭吸附镉符合Langmuir等温方程,镉离子在活性炭上的吸附属单分子层吸附;煤基活性炭适宜的吸附除镉条件为粒径0.054mm、Cd(Ⅱ)初始浓度35mg/L、活性炭用量0.05g、吸附时间1h,此时的吸附容量达40mg/g。  相似文献   

13.
The objectives of the present research were (i) to report the mass balance of chlorine during pentachlorophenol (PCP) photodegradation and (ii) to reveal the photodegradation pathway experimentally with a theoretical proof based on the density functional theory (DFT). The chlorine of PCP was completely mineralized to produce chloride ions after 24h of UV irradiation. As intermediates, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol and 2,5-dichlorophenol were identified. At least 80% of the chlorine balance during PCP photodegradation was accounted by PCP, these intermediates, and chloride ions. A DFT calculation showed differences in the C-Cl bond dissociation energy level and the positions of respective PCP molecular and the PCP intermediates. The dechlorination intermediates predicted using the calculated C-Cl bond dissociation energy were consistent with those experimentally confirmed, indicating the feasibility of this theoretical method in predicting the dechlorination pathway.  相似文献   

14.
5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO2 heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs.  相似文献   

15.
This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.  相似文献   

16.
Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO2 carrier particles were supported by glass beads with 2–4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the “two-stage” ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe2+]/[H2O2] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC–MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio.  相似文献   

17.
Short-term experiments were conducted to investigate the effect of a commercial Fe and an iron-bearing clay mineral, ferruginuous smectite (SWa-1), on the degradation of pentachloroethane (PCA). After 3 h of contact time, SWa-1 catalyzed PCA dehydrochlorination to tetrachloroethene (PCE, 65% conversion), whereas commercial Fe promoted PCA stepwise dechlorination via dehydrochlorination (approximately 40% conversion) and subsequent PCE hydrogenolysis to trichloroethene (TCE). The addition of unaltered SWa-1 to commercial Fe led to a complete inhibition on TCE production, whereas the addition of reduced SWa-1 barely resulted in a 30% decrease.  相似文献   

18.
The degradation of organic matter in peat bogs is complex and not yet well understood. Recent investigations of the trace gases CO2 and CH4 focussed on the impact of these greenhouse gases on global warming. However, there have to be metabolic intermediates between complex organic structures (i.e., humic acids) and gaseous end products (CH4, CO2, N2, NOx and H2S) other than water-soluble substances (i.e., aromatic acids, amino acids, fatty acids). Deoxygenation during microbial decomposition of plant material also produces anoxic conditions that favor the formation of kinetically stable hydrocarbons. In this study, volatile organic substances (VOS) in peat bogs were investigated using two techniques: purge-and-trap and closed-loop stripping. Coupled gas chromatography–mass spectroscopy analysis revealed mainly branched hydrocarbons (C8H18) in concentrations up to 260 nM in peat pore-water. Additionally, alkylated benzenes were found in concentrations of up to 464 nM, in the peat pore-water, and up to 23 pptv in the headspace of peat cores. However, one-third of all the compounds in the complex VOS-fraction extracted from the peat system remain to be identified, especially those substances containing oxygen.  相似文献   

19.
A fully automated twin ECD gas chromatograph system with sample enriching adsorption–desorption primary stage was deployed on two field campaigns – Ny-Ålesund, Svalbard, Arctic Norway (July–September 1997), and the RRS Discovery CHAOS cruise of the northeast Atlantic (April–May 1998). Concentrations of an extensive set of halocarbons were detected at hourly intervals at pptv levels. We present here the results obtained for the chlorinated solvents, tetrachloroethene (PCE) and trichloroethene (TCE). Average baseline PCE and TCE concentrations of 1.77 and 0.12 pptv, respectively, were recorded in Ny-Ålesund. During pollution incidences, concentrations rose to 5.61 (PCE) and 3.18 pptv (TCE). The cruise data showed average concentrations ranging from 4.26 (PCE) and 1.66 pptv (TCE) for air masses originating over the North Atlantic and Arctic open oceans, to maxima of 15.59 (PCE) and 17.51 pptv (TCE) for polluted air masses from Northern Europe. The data sets emphasise the difficulties in defining remote sites for background tropospheric halocarbon measurements, as Ny-Ålesund research station proved to be a source of tetrachloroethene. The data also suggest possible oceanic emissions of trichloroethene in the sub-tropical ocean.  相似文献   

20.
Takasuga T  Makino T  Tsubota K  Takeda N 《Chemosphere》2000,40(9-11):1003-1007
Simplified thermal formation experiments have been conducted using dioxin-free fly ash as a catalyst with many kinds of combustible samples such as newspaper, kerosene, paraffin, PE (polyethylene), PP (polypropylene) and PVC. Chlorine sources were PVC, NaCl and HCl. The combustion of samples containing chlorine in the absence of dioxin-free fly ash produced dioxins at a low level although HCl was present in the gas stream. On the other hand, the combustion of samples without chlorine with dioxin-free fly ash increased dioxins formation to a level around 10 times higher than that upon heating dioxin-free fly ash alone. This result is considered to be due to the presence of metal chloride in the fly ash and hydrocarbons in the gas stream. The combustion of samples containing either an organic or inorganic chlorine source or using a HCl stream with dioxin-free fly ash increased dioxin level dramatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号