首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40°C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K d ) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   

2.
Accelerated remediation of pesticide-contaminated soil with zerovalent iron   总被引:3,自引:0,他引:3  
High pesticide concentrations in soil from spills or discharges can result in point-source contamination of ground and surface waters. Cost-effective technologies are needed for on-site treatment that meet clean-up goals and restore soil function. Remediation is particularly challenging when a mixture of pesticides is present. Zerovalent iron (Fe0) has been shown to promote reductive dechlorination and nitro group reduction of a wide range of contaminants in soil and water. We employed Fe0 for on-site treatment of soil containing > 1000 mg metolachlor, > 55 mg alachlor, > 64 mg atrazine, > 35 mg pendimethalin, and > 10 mg chlorpyrifos kg(-1). While concentrations were highly variable within the windrowed soil, treatment with 5% (w/w) Fe0 resulted in > 60% destruction of the five pesticides within 90 d and increased to > 90% when 2% (w/w) Al2(SO4)3 was added to the Fe0. GC/MS analysis confirmed dechlorination of metolachlor and alachlor during treatment. Our observations support the use of Fe0 for ex situ treatment of pesticide-contaminated soil.  相似文献   

3.
Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied in field plots located on a Commerce clay loam soil near Baton Rouge, Louisiana at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The half-lives of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth were found to be 54.7 days, 35.8 days and 29.8 days, respectively. The proportion of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth was 94.7%, 86.6%, and 75.4%, respectively of that found in the top 0-60 cm soil depth 30 days after application. Trifluralin concentrations were within a range of 0.026 ng/mL to 0.058 ng/mL in 1 m deep well water, and between 0.007 ng/mL and 0.039 ng/mL in 2 m deep well water over a 62 day period after application. Metolachlor concentrations in the 1 m and 2 m wells ranged from 3.62 ng/mL to 82.32 ng/mL and 8.44 ng/mL to 15.53 ng/mL, respectively. Whereas metribuzin concentrations in the 1 m and 2 m wells ranged from 0.70 ng/mL to 27.75 ng/mL and 1.71 ng/mL to 3.83 ng/mL, respectively. Accordingly, trifluralin was found to be strongly adsorbed on the soil and showed negligible leaching. Although metolachlor and metribuzin were also both readily adsorbed on the soil, their leaching potential was high. As a result, in the clay loam soil studied, metribuzin concentration in groundwater with shallow aquifers is likely to exceed the 10 mg/L US Environmental Protection Agency (EPA) advisory level for drinking water early in the application season, whereas trifluralin and metolachlor concentrations are expected to remain substantially lower than their respective 2 ng/mL and 175 ng/mL EPA advisory levels.  相似文献   

4.
A method for the determination of the mobility of the herbicides, alachlor, metolachlor, simazine and atrazine in soil is described. The method is based on the use of soil thin-layer chromatography (TLC) and does not require the use of radiolabelled compounds. Soil on the TLC plate after development was separated into various bands, the material in each band was extracted with solvents and analyzed by gas chromatography.  相似文献   

5.
Abstract

A method for the determination of the mobility of the herbicides, alachlor, metolachlor, simazine and atrazine in soil is described . The method is based on the use of soil thin‐layer chromatography (TLC) and does not require the use of radiolabelled compounds. Soil on the TLC plate after development was separated into various bands, the material in each band was extracted with solvents and analyzed by gas chromatography.  相似文献   

6.
The acute toxicity test is described in this experiment where the Collembola species Proisotoma minuta was exposed to herbicides in an artificial sea salt solution for seven days. The salt solution did not prohibit the insects' reproduction system. The seven day LD50 values for trifluralin, pendimethalin, metolachlor, prometryn, paraquat, atrazine, fluometuron, and diuron were 3.48, 10.4, 12.4, 13.0, 23.1, 33.4, 250, and 711 mg L(-1), respectively. A good correlation between toxicity of the compounds and their lipophilicity and vapor pressure was recorded in this study.  相似文献   

7.
In this work the degradation of the herbicides metolachlor, diuron, monuron and of the metabolites 2-ethyl-6-methylaniline (EMA), and 3,4-dichloroaniline (DCA) was assessed in laboratory experiments on microbiologically active and sterilized soils. Their leaching potentials were calculated, using Gustafson's equation, by determining their mobility (as Koc) and persistence (expressed as DT50). Lysimeter experiments were also conducted to assess the actual leaching of the studied herbicides in a cereal crop tillage area vulnerable to groundwater contamination. The data obtained from the field were compared to the laboratory results. Moreover, some compounds of particular concern were searched for in the groundwater located near the experimental area in order to evaluate actual contamination and to test the reliability of the leaching potential. The GUS index, computed on data from microbiologically active soil, shows monuron as a leacher compound, EMA and DCA as non-leachers, metolachlor and diuron as transient ones. The presence of metolachlor in the groundwater monitored, even at concentrations up to 0.1 mug/l, confirms the possibility that transient compounds can be leached if microbial activity has not completely occurred in active surface soil.  相似文献   

8.
Copper contamination in paddy soils irrigated with wastewater   总被引:19,自引:0,他引:19  
Cao ZH  Hu ZY 《Chemosphere》2000,41(1-2):3-6
Copper (Cu) contamination was investigated in paddy soils where Cu-rich wastewater (12 mg Cu/l) was used for irrigation. The results showed that Cu contamination increased the soil Cu content from 17.0 mg Cu/kg in the non-wastewater irrigated soils (NWIS) to 101.2 mg Cu/kg in the wastewater irrigated soils (WIS), and Cu accumulated mostly in the surface layer (0-10 cm) of the paddy soil. The average Cu contents in brown rice, rice hull and rice straw from NWIS were 1.4, 7.3 and 14.5 mg Cu/kg, while those from WIS were 15.5, 133.2, and 101.4 mg Cu/kg, respectively. Correlation analysis revealed that the relationship between the Cu content in the rice straw and the rice hull with the total Cu content of the soil could be described by an exponential function (R2 = 0.921 and 0.831, respectively; P <0.01). Rice plants grown in the WIS showed symptoms of black roots, less effective tiller, etc. Subsequently, the rice yield decreased by 18-25%, compared with that grown in NWIS.  相似文献   

9.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

10.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

11.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

12.
ABSTRACT

This study evaluates the dissipation of terbuthylazine, metolachlor, and mesotrione at different depths in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm, north-east Italy. The persistence of three herbicides was studied in three different soil textures (clay soil, sandy soil, and loamy soil) at two depths (0–5 and 5–15 cm). Soil organic carbon content was highest in the clay (1.10%) followed by loam (0.67%) and sandy soil (0.24%); the pH of soils was sub-alkaline. Terbuthylazine, metolachlor, and mesotrione were applied on maize as a formulated product (Lumax®) at a dose of 3.5 L ha?1. Their dissipation in the treated plots was followed for 2 months after application. The concentrations of herbicides were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine, metolachlor, and mesotrione could be described by a pseudo first-order kinetics. Terbuthylazine showed the highest DT50, followed by metolachlor and mesotrione. Considering the tested soil, the highest DT50 value was found in clay soil for terbuthylazine and metolachlor, whereas for mesotrione there was no difference among soils. Significant differences were found between the two soil depths for terbuthylazine and metolachlor, whereas none were found for mesotrione. These results suggest that soil texture and depth have a strong influence on the dissipation of terbuthylazine and metolachlor, whereas no influence was observed on mesotrione because of its chemical and physical properties.  相似文献   

13.

The acute toxicity test is described in this experiment where the Collembola species Proisotoma minuta was exposed to herbicides in an artificial sea salt solution for seven days. The salt solution did not prohibit the insects' reproduction system. The seven day LD50 values for trifluralin, pendimethalin, metolachlor, prometryn, paraquat, atrazine, fluometuron, and diuron were 3.48, 10.4, 12.4, 13.0, 23.1, 33.4, 250, and 711 mg L?1, respectively. A good correlation between toxicity of the compounds and their lipophilicity and vapor pressure was recorded in this study.  相似文献   

14.
In the present study, a soil monitoring program was undertaken in Greek cotton cultivated areas in 2012. Twenty-seven soil samples were collected from the entire Thessaly plain in early summer of 2012, corresponding to approximately three months (current use of pendimethalin), up to one year (for the banned ethalfluralin), and three years (for the also banned trifluralin), after the last dinitroaniline application. Low but not negligible levels of dinitroanilines were detected, ranging from 0.01 to 0.21 μg g?1 d.w. for trifluralin and 0.01–0.048 μg g?1 d.w. for pendimethalin, respectively. Trifluralin was the herbicide most frequently detected (44.4%). The high historic application of trifluralin and its high persistence and accumulation potential is in line with the abundance of the detected residues. The present data indicate that soil samples contain extractable residues of banned trifluralin, but based on the comparison of the theoretical PECplateau for trifluralin (0.277 µg g?1) and the maximum Measured Environmental Concentration, it was concluded that the detected residues should be attributed to previous years’ application. The latter suggested the need for continual monitoring of the dinitroaniline family of pesticides, including the banned substances, aiming thus to an improved environmental profile for agricultural areas.  相似文献   

15.
Books available     
Abstract

The leaching behaviour of the herbicide acetochlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(ethoxymethyl)acetamide] was determined as compared with two congener compounds, alachlor [2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)acetamide] and metolachlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide]. The leaching profiles of the herbicides in columns with different types of soil and their capacity factors in reverse phase HPLC were compared. An approach for preliminary characteristic of the potential for water pollution of acetochlor is presented. The herbicide is classified as a leacher in soil and its potential for contamination of ground water is comparable with those of alachlor and metolachlor.  相似文献   

16.
Transport of silver nanoparticles (AgNPs) in soil   总被引:1,自引:0,他引:1  
Sagee O  Dror I  Berkowitz B 《Chemosphere》2012,88(5):670-675
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.  相似文献   

17.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

18.
An indirect enzyme-linked immunosorbent assay (EIA) for metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamid e) detection in river water and soil was developed using serum obtained from rabbits immunized against the acid of metalaxyl ((N-(2,6-dimethylphenyl)-N-(methoxy-acetyl)-DL-alanine methyl ester) conjugated to bovine serum albumin. The assay had a linear working range from 1 to 50 ng/ml with a mean I50 value of 13.6 ng/ml and a lower detection limit of 2.0 ng/ml. Both the mean interwell and interassay coefficients of variation were less than 4% over the range of the standard curves for samples which had been prepared in phosphate buffered saline (PBS), river water, or soil extract. Assay cross-reactivity to the following four structurally related chloro-acetanilide pesticides were: propachlor (0%), metazachlor (0%), alachlor (23%), and metalaxyl (5,000%). Mean recoveries of metolachlor in spiked (2.0 to 32.0 ng/ml range) PBS, river water, and soil extract were 102%, 103%, and 110%, respectively. Soil samples were taken over a 56-d period from field plots treated with metolachlor and analyzed by GC and EIA. The correlation coefficient for comparison of the two methods was 0.96 with the slope of the linear regression line being 0.78. Furthermore, no statistical difference (P less than 0.05) was found between the dissipation curves of metolachlor derived from GC data versus EIA data.  相似文献   

19.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

20.
Laabs V  Amelung W  Pinto A  Altstaedt A  Zech W 《Chemosphere》2000,41(9):1441-1449
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号