首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
采集了呼和浩特市城市扬尘、土壤风沙尘、建筑水泥尘和煤烟尘4类源样品,进行形态分析和化学组分分析,建立了PM_(10)和PM_(2.5)源成分谱。研究表明,建筑水泥尘和土壤风沙尘呈不规则的块状;而煤烟尘呈现圆形。就化学组成而言,各源类PM_(10)和PM_(2.5)的成分谱之间相关系数在0.8以上,具有显著相关性,各类源的标识组分一致。城市扬尘中主量成分为Si、Al、Ca、Fe和有机碳(OC);土壤风沙尘中Si占比最高,PM_(10)和PM_(2.5)中占比均大于20%(质量分数,下同);建筑水泥尘中Ca占比较高;煤烟尘中Si、Al、OC、SO_4~(2-)在PM_(10)和PM_(2.5)中的占比均超过10%。此外,对供热、工业、电力行业排放的煤烟尘进行了对比分析,供热行业中的煤烟尘含碳量较高;工业排放的煤烟尘PM_(10)中元素占比较高,这可能与锅炉类型、除污措施等相关。  相似文献   

2.
上海市中心城区主干道道路扬尘组分特征及来源解析   总被引:4,自引:0,他引:4  
分析了上海市中心城区主干道道路扬尘的化学组分,并采用化学质量平衡模型进行了道路扬尘的源解析。结果表明,上海市中心城区主干道道路扬尘的主要化学组分为Si(18.285 0%(质量分数,下同))、Ca(5.772 2%)、Al(2.460 6%)、Fe(2.345 8%)、Mg(0.889 3%)、K(0.846 4%)、Na(0.785 6%)等地壳元素;源解析结果表明,道路扬尘的首要污染来源是建筑尘(贡献率为34.4%),其次是土壤风沙尘(贡献率为32.6%)、渣土尘(贡献率为20.8%)、机动车尾气尘(贡献率为0.8%)。土壤风沙尘、建筑尘和渣土尘是道路扬尘主要的供应者(贡献率合计超过80%)。  相似文献   

3.
采矿扬尘源成分谱化学组分特征研究   总被引:1,自引:0,他引:1  
扬尘是颗粒物的一种重要污染源类,主要包括土壤扬尘、道路扬尘、建筑扬尘、采矿扬尘等,但是针对采矿扬尘源成分谱的分析较少见。以采矿扬尘为研究对象,进行源样品采集和化学组分分析,构建相应的源成分谱,同时还与其他典型的污染源类(土壤扬尘、建筑扬尘、煤烟尘)进行比较。结果表明:(1)采矿扬尘中主量成分为Si、Al、Ca、有机碳(OC)和Fe,其质量浓度分别为(0.13±0.01)、(0.07±0.01)、(0.07±0.02)、(0.03±0)、(0.02±0)g/g。(2)采矿扬尘中Al/Si、Al/Ca、Si/Ca与其他源中对应的比值较相似,无明显的特征,说明采矿扬尘源成分谱与其他源具有较强的相似性。(3)采矿扬尘与土壤扬尘、建筑扬尘、煤烟尘源成分谱的分歧系数分别为0.49、0.36、0.39,表明采矿扬尘与其他3类源成分谱之间可能相似。  相似文献   

4.
重庆市颗粒物中元素分布特征及来源分析   总被引:1,自引:0,他引:1  
2012年在重庆市6个采样点采集PM10和PM2.5样品,采用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子光谱仪(ICP-OES)对样品中Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd、Pb共17种元素含量进行测定,在此基础上对各元素浓度分布特征进行分析,并采用富集因子法(以Al元素为参比元素)和主因子分析法定性分析其污染的主要来源。结果表明,除Al、Ca、Co外,其他与人类活动相关的各元素更容易富集于PM2.5上。Zn、As、Pb、Cd在PM10和PM2.5中极强富集,表明重庆市燃煤、城市交通、工业等污染严重。大渡口和沙坪坝站点PM10和PM2.5中各元素的污染程度相对偏高,南坪、缙云山、巴南、茶园4个采样点各元素的污染程度相对偏低。主因子分析结果表明,土壤尘、建筑尘、燃煤工业尘、道路尘是重庆市PM10和PM2.5的主要来源。  相似文献   

5.
利用ICP-AES分析了潞城市采暖期和非采暖期4个不同功能区PM10样品中16种化学元素,对不同元素的时空分布特征进行了研究,并采用富集因子和主成分分析初步研究了潞城市PM10中元素的主要来源。结果表明,潞城市PM10中重金属污染较为严重,且各元素在采暖期的平均浓度均明显高于非采暖期。PM10中Ca、V、Cr、As、Ni、Mn、Cu、Zn、Al和Pb的富集因子EF〉10,主要来源于人为污染;而Na、Mg、Si、Fe和K的EF〈10,除部分来自人为活动外,主要来自土壤风沙等自然来源。主成分分析结果显示,潞城市PM10中元素的主要来源按贡献率大小依次为:煤烟尘和工业粉尘50.39%,自然源34.37%和机动车尾气15.24%。  相似文献   

6.
西安道路尘中元素分布特征及其来源分析   总被引:2,自引:0,他引:2  
2009年1月对西安空间范围的道路尘进行采样,分析了其元素含量和空间分布特征。结果表明,道路尘中Si、Al、Fe、Mg、V、Mn、Ni、Rb的来源基本没有受到人为活动的影响,Ca、Na、K、Ti、Co、Zr的来源受到了人为活动的轻微影响,Cr、Ba、As、Sr、Cu、Zn、Pb的来源则明显受到了人为活动的影响;非(轻)污染元素中Si、K、Rb、Zr、Ti在空间上分布较为一致,且相关性较好,其来源主要受黄土地区粉尘沉降的影响,Ca、Fe、Mn等来源复杂,在一定区域的道路尘中其含量受到人为活动的轻微影响;重污染元素中Pb与As的相关性较好,且空间分布较为一致,主要来源于燃煤和农用机动车尾气排放,Ba与Sr、Cu的相关性也较好,但空间分布特征并不完全相同,显示了其来源以及源排放类型的空间差异;道路尘是一种复杂的环境介质,用单一的源、或者源类型来代表整个城市范围内道路尘元素(无论是地壳元素或是污染元素)的来源是不科学的,应该结合每种元素分布状态在空间上客观存在的差异来进行分析。  相似文献   

7.
2006-2007年采暖季、风沙季和非采暖季分别在抚顺市的6个采样点采集PM10样品,用等离子体原子发射光谱(ICP-AES)法测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量,并用地质累积指数对其污染状况进行初步评价。结果表明:(1)从PM10中元素在不同采样点的含量看,抚顺市PM10中Ti、Mn、Mg、Cu、Zn、Pb、Cr、Ni、Co这9种元素在各采样点间的差别较大;Al、Ca、Na、K、As、Cd、Fe、V这8种元素差别较小。(2)从PM10中元素在不同采样季的含量看,抚顺市PM10中Mn、Mg含量的季间差别较大,其余15种元素季间差别较小。(3)Zn、Cd污染较重;Ti、Al、Mg、Ca、Na、K、As、Fe和V污染较轻;其他6种元素在6个采样点和3个采样季污染程度差别较大。(4)水库采样点各元素污染级别均不是最高;新华采样点PM10中Cu、Zn、Pb、Cr、Ni、Co、Cd污染级别均较高。(5)3个采样季PM10中Cd、Zn污染均较重,属于重度或严重污染;在采暖季PM10中Cu、Pb、Cr的地质累积指数较风沙季、非采暖季大;在非采暖季PM10中Mn、Co受到的污染比采暖季和风沙季稍严重。  相似文献   

8.
建立了微波消解-电感耦合等离子体质谱(ICP-MS)法,同时测定大气PM2.5中K、Na、Ca、Mg、Fe、Al、Zn、Si、Ti、V、Cr、Mn、Co、Ni、Cu、As、Cd和Pb等18种金属元素的分析方法.样品用HNO3+H2O2(5∶1)经微波消解系统进行前处理.该方法操作方便,酸用量少,由于是密闭消解,对环境污染也少.经过反复调试,确定了仪器最佳操作条件.结果表明,各种元素标准曲线的线性相关系数均在0.9990以上,方法检出限在0.07 μg/L ~1.16 mg/L之间,精密度实验中各元素的RSD均小于7.53%,回收率在91.38%~117.53%之间.该方法能够快速有效地实现多元素同时测定,检测线性范围宽,测试结果准确可靠,可以应用于大气颗粒物中多种金属元素的测定.采用富集因子分析法对常州市大气中PM25做来源分析表明,常州市大气PM25中,大部元素的富集因子都大于10,其中,Ni、Cu、Zn、As、Cd、Co和Pb在各个采样点的富集因子都非常高,表明主要来自于人为污染.  相似文献   

9.
南昌市秋季大气PM_(2.5)浓度及化学组分特征分析   总被引:1,自引:0,他引:1  
2013年秋季在南昌市6个空气自动站点连续采集了10d的大气PM2.5样品,对采集的样品进行无机元素、有机碳、元素碳和水溶性离子等组分的分析。结果表明,监测期间南昌市PM2.5均值都低于《环境空气质量标准》(GB 3095—2012)二级标准限值(75μg/m3)。南昌市大气PM2.5主要组成元素为S、Si、Ca、Al、Fe、Na和Mg,说明城市扬尘、建筑水泥尘和燃煤尘等源类贡献率高;SO2-4、NO-3和NH+4是最主要的水溶性离子,NO-3与SO2-4浓度比为0.63,说明相比于固定源,以机动车排放为代表的流动源对南昌市大气PM2.5浓度影响更大;有机碳/元素碳(质量比)为2.9,说明南昌市有显著的二次有机碳生成。  相似文献   

10.
运用地球化学标准化方法评价浙江省平湖市农田土壤重金属污染状况.结果显示,约50%的农田土壤受到了重金属人为污染,其中除了5.6%的农田土壤受到了Hg中度人为污染外,其余均为轻微人为污染.每种重金属元素的地球化学基线值均可信,Cr、Pb、Cu、Zn、Ni和As与标准化元素Al线性相关性较好,而Hg和Cd与Al线性相关性不好,原因可能与后者受人类活动或土壤环境影响较大有关;多变量聚类分析结果表明,平湖市农田土壤重金属元素组成特征为Cd一族、Hg一族,而Cu、Pb、Ni、As、Cr和Zn为一组合族.  相似文献   

11.
乌鲁木齐市不同区域大气降尘中重金属污染及来源分析   总被引:1,自引:0,他引:1  
为进一步了解城市不同区域间大气降尘中重金属含量及其差异性,沿城市走向梯度布设降尘采样点采集样品。采用电感耦合等离子体原子发射光谱(ICP-AES)仪测定样品中Cu、Cr、Mn、Fe、Ni、Zn、Cd、Pb和As等重金属含量,并计算富集因子来判断不同区域间的污染源类型,通过因子分析方法探讨污染的来源。结果显示,所测重金属元素中除Mn外,均受到人为源的影响,且十分严重。从贡献率来看,不同区域间第一因子的贡献率虽有差异,但均为来自土壤的风沙扬尘造成;第二因子的贡献率也不尽相同,主要是燃煤产生的污染;第三因子出现了差异,市南区和市北区主要是受金属冶炼的影响,而市中区的影响可能来自垃圾焚烧;市南区未出现第四因子,而市中区和市北区的污染源也不相同。分析表明,城市大气降尘污染依然严重,做好防控风沙和建筑扬尘,减少煤炭消耗,调整能源结构和产业布局是整体减少大气降尘的关键。  相似文献   

12.
为掌握潍坊市PM2.5的主要来源、各排放源对PM2.5的贡献与内陆、沿海城市的差别,采集了潍坊市2017年不同季节环境受体中PM2.5样品和源样品,分析了样品中的化学组分,建立了源成分谱和受体组分数据库,基于复合受体模型和源排放量等对潍坊市PM2.5进行了来源解析。结果表明:(1)PM2.5和化学组分浓度总体表现为秋冬季较高、春夏季较低。(2)潍坊市源解析结果总体介于沿海城市和内陆城市之间。(3)精细化源解析表明:煤烟尘是首要的贡献源类,其分担率达到36.0%,其中电厂、工业、民用燃煤的分担率分别为14.4%、18.0%和3.6%;机动车尘的分担率达到25.4%,其中载客、载货、其他汽车的分担率分别为6.3%、14.0%和5.1%;扬尘中土壤风沙尘、建筑水泥尘的分担率分别为10.1%和11.7%;工艺过程的贡献相对较低(3.9%)。  相似文献   

13.
熔融固化是目前危废焚烧灰渣处置的有效方法之一。为了能够有效地控制熔融过程中重金属元素的迁移,采用HSC Chemistry软件模拟研究了重金属元素As、Pb、Zn、Cu、Ni、Cr等在熔融过程中的物质变化历程,考察了不同气氛、温度、氯化物种类的影响。结果表明:在还原性气氛下,As、Pb几乎100%以As S(g)和Pb S(g)的形式挥发进入气相;Zn主要以气态金属挥发,1 500℃时90.8%的Zn进入气相;Cu、Ni、Cr与灰渣中的Fe2O3、Al2O3等形成不易挥发的化合物,几乎完全被熔渣固化。氧化性气氛有利于各重金属元素的固化,除46.47%的Pb以Pb Cl2(g)、Pb Cl(g)、Pb O(g)的形式挥发外,其余重金属元素均能被固溶在渣中。与灰渣中Na Cl相比,Ca Cl2不影响As、Cr的平衡形态分布,但能促进Pb、Zn、Cu、Ni以气态氯化物的形式挥发进入气相,不利于重金属元素的固化。  相似文献   

14.
分析了2016年北京市的PM_(2.5)及其中的Zn、Pb、Mn、Cu、Cr、As、Ni、Cd、Sb、Co、V、Ba、Al、Fe、Mg、Ti、Ca、S 18种元素含量,并对重金属As、Cr、Pb、Cd、Ni、Mn、Cu和Zn进行了相应的健康风险评价。结果表明:PM_(2.5)质量浓度为14.63~206.35μg/m~3,年平均值为74.00μg/m~3,超过《环境空气质量标准》(GB 3095—2012)二级标准(35μg/m~3)1倍多;PM_(2.5)中S、Zn、Sb、Pb和Cd的富集程度较高,主要来源于机动车尾气排放、燃煤和工业活动;Mn、Pb、Cr、Zn、Cu、As、Cd、Ni 8种重金属对儿童、成人女性、成人男性的非致癌总风险均小于1,不存在非致癌风险;As、Cd、Cr和Ni 4种重金属的致癌风险为1.94×10~(-7)~6.04×10~(-5),均小于10~(-4),部分重金属可能存在潜在致癌风险,主要是As和Cr存在潜在致癌风险。  相似文献   

15.
重庆西部农业区大气沉降特征及其对地表的影响   总被引:1,自引:0,他引:1  
从2009年4月至2010年4月,在重庆西部农业区采集了50个大气干、湿沉降样品,分别测试干、湿沉降样品中K、Ca、Mg、N、P、S、Fe、As、Cd、Cr、Cu、Hg、Ni、Zn、Pb、B、Mo、Mn 18种元素的含量,计算各元素的年沉降通量。研究发现,重庆西部农业区各元素年沉降通量均低于重庆主城区和成都经济区。采用富集因子分析得出,S、Cd、N、Pb、P、Hg、Mo、Zn、Cr、As明显受人为活动影响,其中S、Hg、As、Pb是典型的燃煤元素,Cd、Cr、Zn主要来源于工业排放、汽车尾气等,N、P与农业施肥密切相关。相关性分析表明,大气沉降输入Hg引起土壤中Hg含量显著增加,大气沉降输入S引起地表水中SO2-4浓度显著升高。  相似文献   

16.
以吕梁的小米秆、豆秆、玉米秆、树叶和草叶5种典型农林生物质为研究对象进行燃烧实验用武汉天虹TH450C型中流量大气综合采样仪对排放的烟尘进行采集。分析其碳组分(有机碳OC和元素碳EC)及水溶性无机离子,以期为颗粒物来源研究提供重要数据支撑。结果显示:5种农林生物质燃烧尘中,TC(total carbon)在颗粒物中所占比例介于62.37%~73.46%之间,碳组分是农林生物质燃烧尘的重要组成部分其中尤其以树叶燃烧尘中OC和EC的百分含量最大,分別达到39.78%和33.68%;生物质燃烧尘中碳组分的百分含量仅次于机动车尾气尘,但远大于煤烟尘、土壤风沙尘、建筑水泥尘和道路尘等源;OC/EC值介于1.15~1.26之间,该值可以初步用来作为判定农林生物质燃烧的ー个重要指标;K~+,Na~+,Ca~(2+)、Mg~(2+)、NH_4~+、F~-C1~-、S0_4~(2-)和NO_3_等9种水溶性无机离子之和在颗粒物中所占比例介于18.22%~24.12%之间,水溶性无机离子是农林生物质燃烧尘的重要组成部分;S0_4~(2-)、K~+、Cl~-、F~-是4种最主要的水溶性性无机离子;生物质燃烧尘中K~+主要以KCl的形式存在。  相似文献   

17.
雷州半岛土壤重金属分布特征及其污染评价   总被引:5,自引:1,他引:5  
在雷州半岛采集了106个土壤表层样品,分析了其中8种重金属元素(Cu、Pb、Zn、Cr、Ni、Cd、Hg和As)的全量.结果表明,雷州半岛土壤重金属污染由高到低排序为Ni>Cr>Hg>Cu>Zn>Cd>As>Pb,Zn、Cd、As和Pb质量浓度均没有超标,Hg和Cu质量浓度超标率亦不高,但Ni和Cr平均质量浓度达49.81、87.13 mg/kg,高于国内外其他对照区域,超标率分别为25.47%和24.53%;重金属元素在雷州半岛各土壤利用类型中分布规律不明显,按4种主要土壤利用类型受重金属污染程度大小排序为甘蔗地>果园土>水田>菜地;雷州半岛土壤综合污染指数总平均为0.970,土壤总体上尚清洁,重金属污染处于警戒水平;雷州半岛各区域中,徐闻、雷州两地土壤重金属质量浓度明显高于其他地区,其主要原因是徐闻、雷州两地成土母质主要为玄武岩,造成土壤Cr、Ni及其他重金属背景值较高.  相似文献   

18.
于2013年9月(非采暖季)、2014年2—3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM_(2.5)样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM_(2.5)的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM_(2.5)的主要组成,分别占到ρ(PM_(2.5))的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM_(2.5)的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

19.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

20.
为探究泰山景区PM_(2.5)的化学组分特征,于2015年2月(冬季)和4月(春季)在位于泰山景区中的南天门和位于泰山景区与泰安城区交界处的某学校2个点位采集PM_(2.5)样品,并分析其化学组分。结果表明,泰山景区冬季和春季的PM_(2.5)质量浓度分别为(65.14±42.21)、(54.32±25.96)μg/m~3,冬季高于春季,某学校高于南天门。SO_4~(2-)是泰山景区PM_(2.5)中浓度最高的水溶性离子,冬、春季的水溶性离子污染来源比较稳定。泰山景区存在一次有机碳向二次有机碳转化的反应。冬季,Ti、Na、K、Mg的富集因子(EF)介于1~10之间,为人为来源和自然来源的混合来源;Ca、Cr、Mn、Fe、Ni、Cu、Zn、Pb的EF10,主要来自于人为来源。春季,Na、K、Mg、Cr、Mn、Fe、Ni的EF介于1~10之间,为人为来源和自然来源的混合来源;Ca、V、Cu、Zn、Pb主要来自于人为来源(EF10);Ti主要来自于自然来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号