首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
抗生素的滥用使得其在环境中被频频检出,并且由此导致的抗性基因污染已严重威胁到人类和动物健康。抗生素的吸附/解吸行为是其进入环境后发生迁移转化的重要途径之一。生物炭因具有成本低廉、制备简单、吸附效果好等优点,近年来被学者广泛关注。从动力学、热力学角度阐述生物炭对抗生素的吸附/解吸机理,分析生物炭对抗生素吸附/解吸过程的影响因素,包括生物炭自身特性(比表面积、官能团、微孔结构)、生物炭释放的溶解性有机质(DOM)、生物炭中的持久性自由基以及pH、温度、离子强度、腐殖酸、生物炭老化等环境因素,试图系统探究生物炭对抗生素吸附/解吸的本质。虽然生物炭对抗生素吸附行为的研究已日渐成熟,但有关生物炭对抗生素的解吸机理、生物炭衍生DOM对吸附/解吸过程的影响、生物炭施用后带来的环境风险以及改性生物炭的实际应用等方面的研究还不够完善,今后对这些方面的研究仍有待加强。  相似文献   

2.
土壤重金属钝化材料生物炭的研究进展   总被引:2,自引:0,他引:2  
原位钝化法作为一种快速有效的土壤重金属污染治理方法得到了广泛的应用。生物炭是由生物质在缺氧环境下热解而成的一种含碳材料,具有精细的孔隙结构、较大的比表面积和丰富的表面官能团,能够有效地钝化土壤中的重金属,降低其生物有效性,是一种应用前景广阔的钝化材料。综述了影响生物炭对土壤重金属钝化效果的主要因素、钝化机制以及生物炭的改性方法。寻找钝化持效性好的生物炭材料,深化研究生物炭与不同形态重金属的作用机制,有利于更好地将生物炭钝化材料应用于重金属污染土壤的修复。  相似文献   

3.
以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe_2O_3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g~(-1),高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。  相似文献   

4.
炭化是污泥资资源化利用的重要途径。研究了污泥基生物炭对Cd的吸附过程,探讨了污泥基生物炭吸附重金属Cd的动力学和热力学特征。结果显示污泥基生物炭对Cd的吸附符合准二级动力学方程。Freundlich方程能较好的模拟吸附等温线。随着温度增加,吸附呈现逐渐增强趋势。吸附热力学结果显示35℃时吸附并非自发进行,随着温度增加,吸附转为吸热并自发进行。污泥基生物炭对Cd的吸附主要以化学吸附为主,同时存在多种机制共同作用。研究结果表明污泥基生物炭有作为重金属Cd污染废水修复剂的潜力。  相似文献   

5.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

6.
采用花生壳和木屑为原材料分别在300、600℃限氧条件下热裂解制备4种生物炭,研究了其对阳离子型染料亚甲基蓝(MB)、阴离子型染料刚果红(CR)和重金属Pb(Ⅱ)的吸附等温线和吸附动力学效应以及生物炭上Pb(Ⅱ)的解吸再生效应。结果表明,相比Freundlich方程,生物炭对MB和Pb(Ⅱ)的吸附等温线更符合Langmuir方程。其中,生物炭对MB的吸附受到表面含氧官能团和平均孔径影响,对Pb(Ⅱ)的吸附机制以离子交换或共沉淀为主。相比Langmuir方程,生物炭对CR的吸附等温线更符合Freundlich方程,吸附机制主要以疏水作用为主。300℃热裂解花生壳制备的生物炭对MB吸附效果最好,最大吸附量达28.0 mg/g;600℃热裂解制备的生物炭对CR吸附效果最好;300、600℃热裂解花生壳制备的生物炭对Pb(Ⅱ)吸附效果均较好,最大吸附量分别为63.7、73.2 mg/g。生物炭对MB、CR和Pb(Ⅱ)的吸附基本在24 h内达到平衡,相比准一级动力学模型,吸附过程均更符合准二级动力学模型。0.1 mol/L盐酸能有效解吸4种生物炭吸附的Pb(Ⅱ)。生物炭的吸附效果和吸附机制与生物炭制备时的热裂解温度和原材料种类关系密切。  相似文献   

7.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

8.
椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附   总被引:2,自引:0,他引:2  
为了研究不同裂解温度制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附性能差异及其机理,并为制备高效吸附生物炭提供依据,采用Langmuir和Freundlich模型拟合分析了300、500和700℃3个裂解温度下制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的等温吸附曲线,使用元素分析仪、Boehm滴定法、扫描电子显微镜等研究了不同温度制备的生物炭的组成与理化性质。结果表明,Langmuir模型和Freundlich模型都能较好地拟合生物炭对这些重金属的吸附,提高生物炭的制备温度可增加其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量,同时降低其对As(Ⅲ)和Cr(Ⅵ)的最大吸附量;制炭温度升高引起的生物炭C含量、灰分含量、p H、CEC的升高和生物炭表面积增大是导致其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量增大的主要原因。而随着制炭温度的上升,O、H元素含量下降引起的碱性官能团的增加,和羟基和酚羟基官能团的减少是生物炭对As(Ⅲ)和Cr(Ⅵ)吸附量下降的主要因素。  相似文献   

9.
在管式炉对Cd超积累植物东南景天(Sedum alfredii)进行热解,研究热解过程中Cd的迁移和形态转化,并在最佳温度条件下探究制备的东南景天生物炭对Cd的吸附作用。结果表明,随着温度上升,生物炭产率下降,挥发分增加;温度能影响Cd在气、液、固三相中的分布,温度升高能明显促进重金属由固相向气相迁移;生物炭中Cd形态受温度影响,随温度升高,对环境影响较大的水溶态和酸溶态Cd含量呈现出降低趋势,在700℃以上时,大部分Cd是以稳定的可氧化态、可还原态以及残渣态形式存在;800℃热解得到的东南景天生物炭对Cd具有一定的吸附效果,最高吸附量达到28.7mg/g。通过合理控制热解温度能够实现炭产物的稳定化,并可安全利用到重金属污染水体或者农田污染治理中。  相似文献   

10.
污泥是生物法处理市政污水、工业废水产生的副产物,产量大,且处理不当会造成生态污染。用污泥制备污泥生物炭,既能实现污泥资源化利用又能减少环境污染。对目前热解污泥生物炭制备和施用过程中产生的环境效应进行综述,着重讨论了热解污泥制备污泥生物炭过程中的元素(碳、氢、氧、氮、硫等)转化、污泥生物炭中重金属形态、吸附性质及土壤施用情况。系统地分析污泥生物炭从制备到施用过程的环境效应,有利于对其实际应用进行全面的环境风险评估。  相似文献   

11.
热解温度对污泥生物炭的表面特性及重金属安全性的影响   总被引:4,自引:0,他引:4  
以一套中试干燥热解一体化处理设备,采用热解工艺,在300~600℃范围内对污水处理厂产生的剩余污泥进行了批处理,得到了系列污泥生物炭产品,并对其表面电荷、FT-IR图谱等进行了测试,对污泥及生物炭的重金属总量和DTPA可提取态进行了比较分析。研究表明,热解温度会影响生物炭表面电荷分布,而且在400℃时表面电荷分布最均匀。经热解反应后,污泥中的重金属总量虽然得到了一定程度的富集,但Pb,Zn,Cu,Fe和Mn 5种重金属的DTPA-可提取态的含量大幅度降低,因此,污泥生物炭中的重金属被惰性化,降低了环境风险。  相似文献   

12.
生物炭对土壤中铁生物还原作用和重金属分布的影响   总被引:1,自引:0,他引:1  
构建厌氧精瓶培养实验体系,探讨生物炭对土壤中铁的生物还原和其他重金属形态转化的影响。结果表明:生物炭会影响铁还原菌希瓦氏菌(Shewanella oneidensis MR-1)对土壤中铁矿物的还原溶出,降低亚铁离子浓度。培养70d后,土壤-希瓦氏菌(SR)处理组亚铁离子摩尔浓度为(291.0±58.0)μmol/L,土壤-希瓦氏菌-生物炭(SRB)处理组亚铁离子摩尔浓度降为(94.7±32.4)μmol/L。同时,生物炭改变了铁生物还原作用对土壤中重金属迁移性的影响。SRB处理组土壤中可交换态锌、钴和镍含量低于土壤-生物炭(CB)处理组,而铁锰氧化物结合态含量增加;与SR处理组相比,SRB处理组可交换态和铁锰氧化物结合态锌、钴、镍含量均有所增加。因此,在稻田等厌氧环境下应用生物炭修复重金属污染土壤时,生物炭对铁矿物生物还原、重金属形态转化的影响需要引起关注。  相似文献   

13.
柚子皮制备生物炭吸附苯酚的特性和动力学   总被引:2,自引:0,他引:2  
廉价的柚子皮作为原材料制备生物炭吸附剂对含苯酚废水进行吸附研究。扫描电镜结果表明,柚子皮制备的生物炭具有较好表面吸附空间结构,比表面积测定为261.69 m2/g。此外,能谱对柚子皮生物炭元素分析发现,生物炭主要含有C、O、P、K,这些是生物质特点。红外对柚子皮生物炭分析发现生物炭含有羟基、氨基、羰基、羧基、磷酸酯或者硫酸酯等活性基团,这些是吸附苯酚的特性官能团。在初始浓度为100 mg/L,投加量为3 g/L,中性pH,30℃条件下吸附30 min后柚子皮生物炭对苯酚的去除率达到76.4%。伪二级动力学方程能很好地拟合柚子皮生物炭对苯酚的吸附过程。同时,Langmiur和Freundlich等温方程在整个温度都能较好地拟合数据,在30℃时,Langmuir理论最大吸附容量可达到49.75 mg/g。通过实际废水应用实验,表明柚子皮生物炭是一种有潜力可用于高浓度含酚废水的处理的有效材料。  相似文献   

14.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

15.
为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。  相似文献   

16.
皂化改性橘子皮生物吸附剂对重金属离子的吸附   总被引:3,自引:0,他引:3  
以生物废料橘子皮(OP)为原料,经乙醇、氢氧化钠处理,得到改性橘子皮生物吸附剂SOP,将其用于对重金属离子Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的吸附。研究了溶液pH、吸附时间和重金属离子初始浓度对SOP吸附性能的影响。结果表明,重金属离子在生物吸附剂上的吸附速率快,符合准二级动力学方程。SOP对重金属离子的吸附等温线符合Lang-muir模型,根据Langmuir模型计算SOP对Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的饱和吸附量分别为56.82、152.4、66.27、33.90和23.02 mg/g,均高于改性前。常见阳离子的存在对重金属离子吸附的影响较小,改性后的橘子皮生物吸附剂可以再生重复使用4次以上,是性能良好的重金属离子吸附剂。  相似文献   

17.
生物炭作为一种绿色环保的功能材料因其在污水处理和污染土壤修复方面具有显著效果而受到极大关注.采用红外光谱、元素分析仪及微孔分析对不同温度(200、300、400、500和600℃)条件下制备的木屑和麦秆生物炭进行特性表征,并采用制备的生物炭净化石油污染土壤,分别考察了污染物性质、生物质原料和热解温度对其净化效果的影响.结果表明,随着热解温度的增高,生物炭芳香化程度增加,极性降低,微孔结构逐渐发育,表面积增大.加入生物炭33 d后,污染土壤中总石油烃及其组分烷烃的浓度比对照略有降低,而PAHs浓度下降显著.随着热解温度升高,2种生物炭对PAHs的吸附强度均逐渐增大,芳香度增高、表面积增大是强吸附的主要原因.2种生物炭在400℃及以下温度制备时对PAHs的吸附强度为:木屑生物炭>麦秆生物炭;而400℃以上温度制备的生物炭吸附强度则相反,即麦秆生物炭>木屑生物炭,说明生物炭原料对其吸附强度也具有显著影响.  相似文献   

18.
随着经济发展,越来越多的重金属通过各种途径进入水体,其中部分通过物理、化学或生物作用在底泥中沉积。在合适条件下,底泥中的重金属又会重新进入水体,危害水生生物以及人类健康。沸石粉、生物炭和镉康等材料常常被应用于底泥中重金属的修复,使重金属中能被生物利用的形态转化为残渣态。通过比较沸石粉、生物炭和镉康对底泥中非残渣态的Cu、As、Cd和Pb的去除效率,发现这3种修复剂均有一定的去除效果,其中沸石粉及生物炭对底泥中非残渣态的重金属去除效果较好。总体来讲,这3种用于底泥非残渣态重金属去除的修复剂的性价比表现为:沸石粉生物炭镉康。  相似文献   

19.
以发酵床废弃垫料和秸秆为原料,采用限氧热解法制备不同温度(300、400和500℃)下的垫料生物炭(D300、D400和D500)和秸秆生物炭(S300、S400和S500),通过X-ray能谱仪、扫描电镜、傅里叶变换红外光谱仪等手段表征其物理化学性质,研究不同吸附时间、Cd~(2+)浓度和初始pH下垫料生物炭对Cd~(2+)的吸附性能,并与秸秆生物炭进行比较。结果表明,D300和D400的吸附过程较符合准二级动力学模型,D500的吸附过程更符合颗粒内扩散模型,吸附时间以30 h为宜;垫料生物炭对Cd~(2+)的等温吸附实验更符合Freundlich模型,400℃制备的垫料生物炭对Cd~(2+)的吸附效果最好;D300和D400对Cd~(2+)的吸附能力受pH的影响较大,D500对Cd~(2+)的吸附能力受pH的影响较小,pH在4.5~7.5之间吸附效果较好。秸秆生物炭吸附Cd~(2+)到表观平衡所用的时间在20 h左右,而最大吸附量比垫料生物炭多2.727 mg·g-1。  相似文献   

20.
腐殖酸对生物炭吸附四环素的影响   总被引:1,自引:0,他引:1  
以猪粪为原料,分别在300℃和700℃条件下制备猪粪生物炭(以下简称生物炭)。采用静态吸附实验,研究生物炭对四环素的吸附性能以及腐殖酸对生物炭吸附四环素的影响。结果表明:生物炭对四环素的吸附过程符合准二级动力学方程(R~20.99)。Langmuir和Freundlich方程都能很好地描述等温吸附过程(R~20.96)。最大吸附量随着热解温度的升高而增加,700℃条件下制备的生物炭吸附量最大,达到7.96mg/g。溶液pH影响吸附过程,pH为3.5~7.5时,生物炭对四环素的平衡吸附量较大。腐殖酸能缩短吸附平衡时间,使其由36.0h提前至18.0h。随着溶液中腐殖酸浓度的增加,300℃条件下制备的生物炭对四环素的平衡吸附量表现出增加的趋势,而700℃条件下制备的生物炭对四环素的平衡吸附量表现出减少的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号