首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
利用本地化修正的MOVES模型结合实地调研数据,测算了西安市机动车排放清单,并对各种污染物的排放分担率进行了分析。结果表明:2012年西安市机动车的PM_(2.5)、PM_(10)、NO_x、总碳氢化合物(THC)、CO、挥发性有机物(VOCs)、NH_3和SO_2排放总量分别为1 890.48、2 668.89、40 847.75、19 413.30、217 103.04、15 244.86、539.76、2 087.50 t;中型货车和重型货车是PM_(2.5)、PM_(10)和NOx的主要贡献者,小型客车和摩托车是THC、CO和VOCs的主要贡献者,小型客车是NH_3的主要贡献者,小型客车与重型货车对SO_2的排放分担率均较高;柴油车对PM_(2.5)、PM_(10)、NO_x和SO_2的排放分担率高于汽油车,而汽油车对THC、CO、VOCs和NH_3的分担率则高于柴油车;CO在冬季排放最多,其余污染物的排放均在夏季最多,但污染物的季节变化总体上不明显。  相似文献   

2.
利用本地化修正的MOVES模型模拟确定了关中地区不同类型车辆的颗粒物排放因子,结合实地调研的保有量和行驶里程数据测算了该地区的机动车颗粒物年排放总量并从季节、城市、车型和燃油等多个角度详细分析了颗粒物的排放分担率。结果表明:关中地区2012年的机动车颗粒物排放总量分别为PM_(2.5)4.06×1O~3 t,PM_(10)5.52×10_3 t;关中五市一区中西安市的颗粒物排放量最高PM_(2.5)和PM_(10)。排放分別占到该地区的46.53%和48.39%;不同类型车辆中重型货车的排放分担率最高其次为中型货车二者之和占到颗粒物总排放的50%以上;不同燃油车辆中,柴油车的排放分担率远远高于汽油车,是颗粒物的主要贡献者;因此中型和重型柴油货车是关中地区控制颗粒物排放污染的重点车型。  相似文献   

3.
通过现场调研结合物料衡算法、排放因子法,建立了2015年乌鲁木齐市固定燃烧点源大气污染物CO、NO_x、SO_2和PM_(2.5)排放清单。结果表明,2015年乌鲁木齐市CO、NO_x、SO_2、PM_(2.5)的排放量分别为4.41×10~4、6.20×10~4、4.61×10~4、1.57×10~4t;从排放污染物的行业来看,采矿与制造业对4种污染物排放的贡献最大,其对CO、NO_x、SO_2、PM_(2.5)排放的贡献率分别为49.02%、42.17%、48.40%、78.55%。从地区分布来看,米东区污染物排放量最大,其对CO、NO_x、SO_2、PM_(2.5)排放的贡献率分别为46.99%、45.90%、51.69%、29.68%。从排放时间来看,供暖季污染物的排放量明显高于非供暖季,白天的污染物排放量高于夜晚。采用蒙特卡罗统计法分析预测的污染物排放量与排放清单计算结果较为接近。  相似文献   

4.
基于机动车排放因子(MOVES)模型和地理信息系统(ArcGIS)技术,建立了西安市2017年分辨率为1km×1km的机动车污染物排放清单。结果显示:2017年西安市机动车污染物PM_(2.5)、PM_(10)、NO_x(NO+NO_2)、NO、NO_2、N_2O和挥发性有机物(VOCs)的年排放总量分别为126.1×10~4、138.2×10~4、2 884.2×10~4、2 577.8×10~4、306.4×10~4、27.9×10~4、1 281.2×10~4 kg;柴油车是PM_(2.5)、PM_(10)和NO_x排放的主要来源,贡献率分别为80.2%、79.5%和75.8%;VOCs和N_2O则主要来自汽油车,贡献率分别为74.2%、89.7%;总体看来,研究区域内不同污染物的空间分布规律相似,这与西安市公路分布有关,PM_(2.5)和NO_x的排放主要集中在主城区及周边县区的高速路和国道,而VOCs的排放主要集中在主城区二环及环内。  相似文献   

5.
基于海南省2016年工业环境统计数据,通过自下而上的方法建立海南省2016年工业大气污染源排放清单,并利用中国多尺度排放清单模型(MEIC)排放清单进行背景源补充,使用CALPUFF模型进行大气污染模拟。污染物排放清单结果显示,2016年海南省SO_2、NO_x、CO、PM_(2.5)、PM(10)、黑碳(BC)、有机碳(OC)、挥发性有机物(VOCs)和NH3的排放量分别为1.50×10~4、5.10×10~4、4.56×10~5、2.34×10~4、2.10×10~4、3.50×10~3、1.20×10~4、4.96×10~4、6.50×10~4 t,其中SO_2主要排放源为化石燃料固定燃烧源(分担率66.67%),NO_x主要排放源为交通源(分担率51.18%),CO、PM_(10)、PM_(2.5)主要排放源为生活源(分担率分别59.01%、81.28%和87.62%),VOCs主要排放源为工业溶剂使用源(分担率75.91%),NH_3主要排放源为农业源(分担率93.54%)。排放量较大的区域集中在儋州市、澄迈县一带。SO_2、NO_x年均最大浓度均出现在海口市,PM_(10)、PM_(2.5)年均最大浓度均出现在定安县。交通源对全省污染物浓度贡献突出,工业源虽然对颗粒物浓度贡献率较低,但仍需加强PM_(2.5)治理。  相似文献   

6.
为研究未来西安市机动车污染控制策略的实施效果,基于情景分析法,以MOVES模型为平台,预测2020年西安市机动车PM_(2.5)、PM_(10)、NO_x、总碳氢化合物(THC)、CO、SO_2排放量分别为1 531.41、1 596.33、44 159.48、14 029.62、383 200.08、5 164.63t。设置5类不同控制措施情景,分析其对机动车的减排效果。结果显示:单一措施中,淘汰"黄标车"和老旧车对污染减排效果最明显,6种污染物均有较大幅度减排;调控轻型客车保有量可明显削减THC、CO的排放,减排比例分别为13.49%、18.59%;提升燃油质量可使各车型SO_2的减排比例均达到90%以上;使用替代燃料情景的污染物减排比例相对较低,但也是一种有效的控制策略;综合控制措施的减排效果最为显著,与基准情景相比,2020年PM_(2.5)、PM_(10)、NO_x、THC、CO和SO_2减排比例分别为78.50%、78.37%、71.77%、72.47%、76.94%、98.30%。  相似文献   

7.
建立了乌昌石区域非金属矿物制品业CO、NO_x、SO_2、PM_(2.5)和PM_(10) 5种大气污染物的排放清单,并进行了时空分布特征分析,初步探究了估算的不确定性。结果显示,乌昌石区域非金属矿物制品业CO、NO_x、SO_2、PM_(2.5)和PM_(10)总排放量分别为3.71×10~4、2.76×10~4、3.10×10~4、3.04×10~4、1.29×10~5 t。熟石膏行业是CO的主要排放源;水泥(干法)行业是NO_x、SO_2、PM_(2.5)和PM_(10)的主要排放源。乌鲁木齐市是CO、NO_x和SO_2排放量的最大贡献源;石河子市是PM_(2.5)和PM_(10)排放量的最大贡献源。乌昌石区域5月至9月是一年中污染物排放的高峰期,11:00至20:00是一天中污染物排放的高峰期。空间上,乌昌石区域的污染物排放主要分布在乌鲁木齐市中部、西南部以及石河子市。  相似文献   

8.
建立了2017年嘉兴市人为源大气污染物排放清单。结果发现,SO_2、NO_x、CO、挥发性有机物(VOCs)、NH_3、总悬浮颗粒物(TSP)、PM_(10)、PM_(2.5)、黑碳(BC)和有机碳(OC)排放总量分别为15 224、60 663、102 600、93 256、26 266、118 923、70 367、19 024、941、1 622t。SO_2的最大排放源是化石燃料固定燃烧源中的电力供热;NO_x的最大排放源是移动源中的柴油车;CO的最大排放源是移动源中的汽油车;VOCs的最大排放源是工艺过程源中的石油化工;NH_3的最大排放源是农业源中的氮肥施用;TSP的最大排放源是扬尘源中的道路扬尘;PM_(10)和PM_(2.5)的最大排放源是工艺过程源中的水泥生产;BC的最大排放源是移动源中的柴油车;OC的最大排放源是餐饮油烟源中的餐饮油烟。对于大气污染中普遍关注的6种污染物,SO_2、NO_x、PM_(10)、PM_(2.5)和VOCs排放的重点源主要集中在各县(市、区)的工业园区或工业集聚区,而NH_3的排放空间分布相对比较分散。  相似文献   

9.
基于车载尾气检测设备(portable emission measurement system,PEMS),研究了国Ⅵ重型车气态污染物的排放特征;基于单位燃油消耗排放因子、单位行驶里程排放因子、单位时间排放因子,分析了NO_x、HC、CO污染物随路况的变化规律。实验结果表明,NO_x、HC、CO气态污染物较国V重型柴油车下降幅度较大,3种气态污染物分别下降88%、98%、62.7%。采用功基窗口法对数据进行整理分析,NO_x测量结果为460 mg·(kWh)~(-1),CO测量结果为192 mg·(kWh)~(-1),HC测量结果为37.5 mg·(kWh)~(-1),该重型柴油车可以满足国Ⅵ车载法规的要求。研究结果可为国Ⅵ重型车排放标准制定及其在环境污染控制领域的应用提供参考。  相似文献   

10.
采用情景分析的方法,设置4种减排情景(包括1种基准情景和3种控制策略情景),研究适合郑州市机动车污染控制的政策,估算2013—2017年不同情景下郑州市机动车污染物排放量,并与基准情景下的排放量进行比较,分析不同控制策略情景下减排效果的年度变化。情景分析结果表明:通过提高燃油标准,减排能力在2013—2017年基本稳定,2017年CO、碳氢化合物(HC)、NO_x和颗粒物(PM)的削减率分别为8.8%、3.5%、0.4%、1.9%;通过淘汰黄标车,削减率大体随着黄标车年保有量的减少逐年下降,2017年CO、HC、NO_x和PM的削减率分别为0.6%、0.8%、0.5%、2.3%;通过推广新能源汽车,每年新增新能源汽车在大型客车、小型客车和公交车中的比例分别是10%、30%、100%,削减率逐年上升,2017年CO、HC、NO_x和PM的削减率分别为3.2%、3.3%、2.2%、2.8%。  相似文献   

11.
为掌握青岛市私家车排放尾气污染现状,利用路网数据和实时交通信息,结合实地调研数据和排放因子,编制主城区私家车污染物排放清单。结果表明:(1)在2017年10—12月的工作日,青岛市主城区的私家车CO、碳氢化合物(HC)、NO_x、PM_(2.5)日排放量分别为17.18、9.36、11.77、8.51t/d。(2)在时间分布上,污染物排放呈现"双峰"特点。早高峰排放量峰值高、高峰持续时间相对较短,晚高峰的峰值略低、高峰持续时间相对较长,高峰期污染物排放量占40%以上。(3)污染物排放主要集中在城区多个商圈的结合处,道路交叉口排放量较高。同时,并不是路网密度越大,空间排放分布值越高。  相似文献   

12.
为更直观地展示机动车尾气污染物的空间分布和时变情况,采用COPERT模型计算排放因子,结合基础速度分配模型得到的分车型车速计算的排放速率,再结合格林希尔治速度—流量模型得到的分车型流量计算的污染物排放量,最后将各路段、各种污染物的机动车排放量在地图上渲染出来,即完成了机动车尾气动态排放清单的研制,以便于分析机动车污染物的排放规律。以广州内环为例,对内环路动态排放清单进行详细分析,结果表明:在早高峰时段有9个路段污染物排放量高于其他路段,而同一路段一天内污染物排放量的变化基本符合交通流的变化趋势,CO、挥发性有机物、NOx和PM2.5排放量两两之间线性相关性强。  相似文献   

13.
使用车载排放测试系统(PEMS)采集轻型电喷汽油车道路实际污染物排放率数据,并利用GPS系统获得测试车辆测试过程的实际行驶工况。定义一段较短时间内的车速变化历程为短时实际行驶工况,以短时实际行驶工况表示车辆运行状态并将其各时刻的速度作为排放模型的参数,用BP神经网络的方法建立了机动车微观排放模型。模型运行结果表明,二氧化碳(CO_2)、氮氧化合物(NO_x)、一氧化碳(CO)、碳氢化合物(HC)等污染物的排放率预测总体误差分别在4%、2%、5%、5%以下,检验了通过短时实际行驶工况各时刻速度计算机动车污染物排放率的方法的可行性。  相似文献   

14.
对渭南主城区道路积尘负荷进行了实测,并计算了2018年不同道路类型和不同车型的交通扬尘颗粒物排放量。结果表明:渭南主城区支路积尘负荷最大,为1.79g/m~2,高速积尘负荷最小,为0.05g/m~2,洒水作业能有效降低积尘负荷;渭南主城区道路交通扬尘PM_(2.5)和PM_(10)的年排放量分别为1 149.65、4 751.88t;小型客车引起的交通扬尘颗粒物排放在城市道路(包括主干道、次干道、支路)和国省道(包括国道和省道)上的分担率最高,分别为59.49%、41.46%,重型货车在高速上的分担率最高,为63.35%;城市道路交通扬尘颗粒物排放有明显的双峰日变化规律,而国省道和高速不明显。  相似文献   

15.
以东城区、顺义区、朝阳区、平谷区为例分析北京四大功能区的机动车排放特征并构建排放清单,通过调查统计各区路网分布、机动车类型、行驶里程等,运用COPERT模型计算不同车型各污染物的排放因子并分析污染物空间分布。结果表明,小客车数量均占据各区主导地位。CO、碳氢化合物主要由小客车贡献,而大客车及各类货车是PM2.5、PM10及NOx的主要贡献来源。顺义区和朝阳区的污染物年排放量明显高于其他两区。基于功能区划分来讨论机动车排放特征并建立排放清单能为城市规划及污染防治提供有效途径。  相似文献   

16.
重型柴油车排放已经成为中国城市与区域大气污染的重要来源。为研究负载条件对重型柴油车实际道路排放的影响,利用车载排放测试(PEMS)方法对2辆国Ⅱ重型柴油货车开展实际道路排放测试,分析不同负载(空载、半载和满载)条件下的尾气污染物排放特征。基于机动车比功率(VSP)方法分析了不同速度区间的气态污染物(NOx、CO和总碳氢化合物(THC))排放特征,同时通过滤膜采样方法对尾气PM2.5及其碳质组分(有机碳(OC)和元素碳(EC))进行了定量分析。结果显示,2辆国Ⅱ重型柴油货车气态污染物排放因子与负载呈现显著的正相关关系,半载和满载时NOx、CO和THC排放因子相对于空载分别升高18%~41%、6%~67%、37%~125%。但2辆重型柴油货车的PM2.5排放因子并未随负载增加而呈现相同的变化规律。在PM2.5中碳质组分排放约占61%~97%(质量分数),其中EC排放因子随负载的增加而增大。  相似文献   

17.
利用高精度的车载排放测试仪,对使用同种发动机的普通柴油巴士和混合动力巴士进行城市典型道路工况下的排放测试,对比2种车型的污染物排放特征。通过对2种车型基于不同车速及比功率下的排放特性分析,发现混合动力巴士有效减少了CO和颗粒物(PM)的排放,CO、PM的排放量分别为普通柴油巴士的42.4%、28.7%;然而由于混合动力巴士的匹配控制系统相对复杂,车身总质量较大,导致其NO_x、碳氢化合物(HC)排放明显高于普通柴油巴士,NO_x、HC排放量分别为普通巴士的167.5%、931.4%。  相似文献   

18.
建立了2015年乌昌石区域化石燃料固定燃烧点源大气污染物(NO_x、SO_2、PM_(2.5)和PM_(10))的排放清单,并对污染物的时空分布特征进行了分析。结果表明,2015年乌昌石区域化石燃料固定燃烧点源NO_x、SO_2、PM_(2.5)和PM_(10)的年排放量分别为2.10×10~5、1.52×10~5、4.28×10~4、8.35×10~4 t。从行业上来看,电力生产与供应行业对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为70.78%、66.56%、51.10%、49.98%;从化石燃料上来看,煤炭对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为95.63%、99.84%、99.70%、99.84%;从锅炉类型上来看,煤粉炉对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为84.20%、85.09%、83.43%、84.06%。固定燃烧点源污染物排放呈现出明显的时间变化特征,采暖季污染物排放量明显高于非采暖季,一天中白天的污染物排放量高于夜晚。空间分布显示,大气污染物的排放源主要集中在乌鲁木齐市、五家渠市和昌吉市。  相似文献   

19.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

20.
负载对实际道路重型柴油车排放的影响研究   总被引:1,自引:0,他引:1  
利用车载测试系统对重型柴油货车空载、50%负载和100%负载不同负载情况下在实际道路的排放进行测试,基于测试数据分析负载对重型柴油货车排放CO、HC、NOx和微小颗粒物(PM)等4种污染物的影响.不同速度区间和行驶模式下负载对排放的影响分析表明,在有负载时,大多数工况下4种污染物排放呈现增加趋势,但各速度区间和行驶模式下的增幅不尽相同,部分工况出现下降.空载时测试柴油车基于新欧洲行驶循环测试(NEDC)工况的标准化CO、HC、NOx和PM排放因子分别为3.38、0.39、6.27、0.39 g/km.对于柴油车重点污染物NOx和PM而言,与空载相比,50%负载时分别增加43%和59%,100%负载时分别增加62%和44%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号