首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
由于人工快渗(CRI)系统对TN去除率较低,该技术在污水处理领域的应用受到限制。为提高TN去除率,将电极生物膜和硫自养反硝化技术耦合应用于CRI系统,考察了"异养+氢自养+硫自养"反硝化脱氮的可行性,并通过菌群结构解析了电极生物膜耦合硫自养强化脱氮的机理。结果表明,电极生物膜耦合硫自养强化型CRI系统在电流强度为15mA时,TN平均去除率可达73.0%,相比传统CRI系统提高了48.0百分点。从稳定运行的电极生物膜耦合硫自养强化型CRI系统反硝化区共检测出231个已知菌属,其中具有硫自养反硝化功能的产硫酸杆菌属(Thiobacillus)和具有氢自养反硝化功能的噬氢菌属(Hydrogenophaga)相对丰度较高,分别为35.9%、15.7%。硫自养反硝化、氢自养反硝化和异养反硝化的共同作用促进了CRI系统脱氮性能的提高。  相似文献   

2.
探究在碳纤维毡电极上利用恒电压电化学聚合聚吡咯(PPy)的聚合效果,并利用傅里叶变换红外线(FTIR)及扫描电镜(SEM)对其进行表征;将聚吡咯覆膜改性后的碳纤维毡电极应用到自养反硝化的电极生物膜反应器(BER)中,考察电极改性对自养反硝化电极生物膜反应器的硝酸盐氮去除性能影响,并研究电极改性对生物膜附着量及生物膜微生物群落的影响。结果表明,恒电压电化学聚合能够在碳纤维电极表面形成均匀稳定的聚吡咯膜,从而实现聚吡咯在炭纤维毡电极上的覆膜改性。改性后的电极应用到自养反硝化电极生物膜反应器中,可使反应器对NO_3~--N的去除效率由对照反应器的67.3%增加到83.9%,处理效果提高了24.7%。对反应器内电极生物膜进行生物量测定和扫描电镜分析,可以看到R2反应器中改性电极生物膜附着量明显多于R1反应器中未改性电极生物膜的附着量,说明电极改性有利于生物膜的附着。电极生物膜微生物16S rDNA分析中R1反应器电极生物膜菌落组成中优势菌属为Dechloromonas sp.,而R2反应器电极生物膜的优势菌为Hydrogenophaga sp.(噬氢菌属)和Thauera sp.(陶厄氏菌属),两者有明显差别,并且R2反应器比R1反应器生物膜的菌落组成更多样化,这说明电极材料的改性对电极生物膜微生物群落的组成产生了影响。  相似文献   

3.
为探究低碳氮比条件下3DBER-S(三维电极生物膜与硫自养耦合脱氮工艺)阴极反硝化菌群特征、强化脱氮机制,在TOC/TN=0.36的进水条件下稳定运行反应器,运用nir S基因克隆文库方法,分析了3DBER-S阴极生物膜反硝化菌群结构。结果表明,在3DBER-S阴极生物膜上反硝化菌中,β变形菌(β-proteobacteria)是优势菌种,占细菌总数的59.22%。其中,所占比例最大的是异养菌,包括与固氮弧菌属(Azoarcus tolulyticus)和趋磁螺菌(Magnetospirillum magneticum)类似的细菌,分别占44.74%和21.05%。能够分别利用硫单质或氢气作为电子供体进行反硝化脱氮的Sulfuricella denitrifican、高氯酸盐降解菌(Dechlorospirillum sp.)和陶厄氏菌属(Thauera)三者所占比例之和达到了17.11%。表明系统中氮的去除是由异养反硝化、氢自养反硝化和硫自养反硝化共同作用的结果,既有效减少了脱氮过程中有机碳源的消耗,又维持了系统酸碱度的平衡,从而能够在低碳氮比条件下维持稳定高效的脱氮效果。  相似文献   

4.
采用硫/白云石自养反硝化脱氮工艺处理印染废水处理厂二级出水,考察不同污泥接种方式、水力停留时间(HRT)、温度及进水负荷对系统脱氮效果的影响。结果表明:反应器在3 d内即可完成快速启动,工程应用中可不接种污泥;反应器最佳HRT为20 min,TN去除率为40.2%,但反冲洗频率加快;温度、进水负荷对系统脱氮效果影响较大,当温度在25~30℃之间,TN平均去除率为43.8%;当进水负荷为(1.37±0.15)kg·(m~3·d)~(-1),TN平均去除率为37.1%,反应器具有较强的抗冲击负荷能力。  相似文献   

5.
电极强化人工湿地处理污水脱氮的效果   总被引:1,自引:0,他引:1  
将电极与人工湿地耦合,创新性地构建了复合电极人工湿地高效反硝化脱氮装置,提高对污水中总氮和COD的去除效果。为了确定复合电极人工湿地比普通人工湿地脱氮效果更优,研究了碳氮比、进水总氮浓度、水力停留时间、电流强度等因素对复合电极人工湿地和人工湿地脱氮效果的影响。研究结果表明:在室温20~25℃,p H=7.5条件下,引入电极的人工湿地有更好的去除效果,较普通人工湿地总氮脱除效率可高出5.41%。并且确定了复合电极人工湿地的最佳运行条件为碳氮比=0.75,水力停留时间=48 h,进水总氮浓度=75 mg·L-1,电流强度=10 m A。在此条件下,总氮去除率可达53.34%。  相似文献   

6.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

7.
通过硫自养反硝化反应器连续流实验与批次实验相结合的研究方式,考察了硫自养反硝化工艺对含布洛芬的(低浓度100μg·L~(-1)和高浓度1 000μg·L~(-1))废水的处理效果,并初步研究了硫自养反硝化活性污泥对其去除机理。结果表明,硫自养反硝化活性污泥对布洛芬有较好的去除效果,反应器中布洛芬的平均去除率95%,且实验组(含布洛芬)的反硝化脱氮效果要优于空白组(不含布洛芬),布洛芬的存在可以提高系统的反硝化脱氮效率。批次实验中,在短时间内(6 d),不同浓度布洛芬的去除率均达到100%;而其中吸附去除率30%。研究表明,在硫自养反硝化工艺中,布洛芬通过生物降解作用和吸附作用去除,且生物降解起主要作用。  相似文献   

8.
采用室内砂槽实验装置,研究了以可降解餐盒(BMB)为反硝化碳源的生物反应器对于模拟污水中硝酸盐的去除效果及其影响因素。结果表明,以BMB为反硝化碳源的反应器启动时间短。当进水硝酸盐浓度为50 mg/L,水温为25℃,水力停留时间为1.15 d时,硝酸盐的去除率可达92.6%以上,实验过程中出现亚硝酸盐积累,出水TOC浓度上升,但反应稳定后亚硝酸盐浓度均低于0.1 mg/L,且TOC浓度有下降趋势;水力停留时间减小或者进水硝酸盐浓度增加均能使得脱氮效率降低,但当水力停留时间在0.57~1.15 d,进水硝酸盐浓度在50~80 mg/L范围变化时,反应器硝酸盐去除效率仍能达到80%以上;温度对反硝化作用影响较大,当温度为(20±1)℃时,硝酸盐的去除效率仅为62.0%、74.4%和97.5%。  相似文献   

9.
通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH_4~+-N)与硝氮(NO3--N),考察不同NO3--N/NH_4~+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH_4~+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH_4~+-N浓度为20~40 mg·L~(-1)的条件下,NO3--N/NH_4~+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH_4~+-N比为1.2时,耦合效果最佳,对应的NH_4~+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62±0.44)mg·(g·h)-1(以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。  相似文献   

10.
分别以厌氧污泥、脱氮硫杆菌菌悬液和厌氧污泥并添加脱氮硫杆菌菌悬液为接种物,以硫化物和硝酸盐为进水基质,考察不同接种物条件下,各反应器的硫化物氧化特性、反硝化特性、生化反应机理及微生物特性。结果表明,在无菌条件下,硫化物不能被硝酸盐化学氧化。接种脱氮硫杆菌菌悬液的2#反应器的硫氧化速率为1.98 g S/(m3.h),停留24 h硫化物的去除率高达97%,脱硫能力最强,该接种条件下以硝酸盐氧化硫化物为主反应,优势菌为杆菌,进水的NO3--N/S应控制在0.4以下,可以实现高效生物脱硫。接种厌氧污泥的1#和3#反应器的脱氮效果比2#反应器好,停留时间为24 h时,硝酸盐的平均去除率为96%。单独接种厌氧污泥的1#反应器的硫氧化速率为1.78 g S/(m3.h),其优势菌为球菌,该接种条件下以硝酸盐氧化硫化物和硝酸盐氧化单质硫为主反应,进水的NO3--N/S应控制在0.8左右。以厌氧污泥联合脱氮硫杆菌为接种物时,硫氧化速率为1.71 g S/(m3.h),反应器以硝酸盐氧化硫化物、硝酸盐氧化单质硫以及异养反硝化为主反应,驯化后优势菌为球形、卵圆形和短杆状,应控制进水NO3--N/S为1.2,可以实现同步脱硫反硝化,该工艺既可以用于含硫废水的处理,也可以用于C/N低的硝酸盐废水的处理。  相似文献   

11.
微生物固定在电极表面,电解水产氢与氧所营造的微环境在一定条件下对生物硝化/反硝化及吸/放磷产生了促进作用,使电极-生物复合反应器在脱除有机污染物的同时强化了生物的脱氮及除磷效果。本试验采用了2套结构与尺寸完全相同的单槽内循环反应器,1套通电,1套不通电,在不同电流强度下比较了2套反应器对污染物的去除效果。反应器中以石墨为阳极,活性炭纤维为阴极,电极-生物复合反应器的总氮去除率可比未通电流的反应器高出30%左右,总磷去除率增加11.5%,而氨氮、COD的去除率都维持在100%和95%左右。试验表明,电流的引入在一定条件下能明显强化生物反应器脱氮除磷效果。  相似文献   

12.
研究固定反硝化菌活性炭纤维电极的阴极极化行为及其硝酸盐氮脱除率,考察了活性炭纤维电极电化学强化脱氮系统中生物过程对电化学过程的影响。实验表明,反硝化过程影响电极电化学反应,参数表观交换电流密度可用来表征体系反硝化菌的反硝化能力,新定义了生物效益量,其变化率与硝酸盐氮脱除率相关性良好。  相似文献   

13.
pH对氢自养型反硝化菌反硝化性能的影响   总被引:4,自引:0,他引:4  
采用模拟硝酸盐污染地下水(简称模拟水)驯化培养氢自养型反硝化菌,建立了定量分析氢自养型反硝化菌生物量的方法,研究了pH对氢自养型反硝化菌反硝化性能的影响。结果表明,每单位OD600相当于水样中氢自养型反硝化菌的生物量为491.75mg/L。当初始pH在6.7以下或9.2以上时,氢自养型反硝化菌生物活性会受到抑制,而初始pH为7.2、7.7、8.2和8.7时,反硝化进行12h后模拟水中的总氮去除率分别为99.7%、99.6%、96.6%和83.5%。经过12h的反硝化模拟水的pH增加0.1~0.9,硬度降低10.01~48.05mg/L;初始pH为6.7~8.7的模拟水在反硝化进行12h后生物量增加5.68~6.03mg/L,初始pH为7.7的模拟水反硝化速率最高,达0.041mg/h。  相似文献   

14.
电极-生物复合反应器处理城市污水的初步研究   总被引:2,自引:0,他引:2  
微生物固定在电极表面,电解水产氢与氧所营造的微环境在一定条件下对生物硝化/反硝化及吸/放磷产生了促进作用,使电极-生物复合反应器在脱除有机污染物的同时强化了生物的脱氮及除磷效果。本试验采用了2套结构与尺寸完全相同的单槽内循环反应器,1套通电,1套不通电,在不同电流强度下比较了2套反应器对污染物的去除效果。反应器中以石墨为阳极,活性炭纤维为阴极,电极-生物复合反应器的总氮去除率可比未通电流的反应器高出30%左右,总磷去除率增加11.5%,而氨氮、COD的去除率都维持在100%和95%左右。试验表明,电流的引入在一定条件下能明显强化生物反应器脱氮除磷效果。  相似文献   

15.
硫自养反硝化去除地下水中硝酸盐氮的研究   总被引:6,自引:0,他引:6  
研究实际地下水硫自养反硝化动力学过程,考察季节因素(温度)对动力学的影响,实验结果表明,地下水升流式硫自养滤柱反硝化动力学符合1/2级动力学模型,其反应速率常数受温度的影响很大,用阿仑尼乌斯方程计算硫自养反硝化活化能为80.38 kJ/mol。硫自养反硝化产生的硫酸根与反硝化掉的硝酸根离子呈线性相关。在地下水不经任何预处理的条件下,硫自养反硝化仍能有效地脱除地下水中的硝酸盐,反应器出水的pH值仍维持在中性范围。  相似文献   

16.
曝气生物流化床处理高氨氮粪便污水   总被引:2,自引:0,他引:2  
应用好氧曝气生物流化床反应器处理动车集便器粪便污水,研究反应器同步硝化反硝化脱氮及去除COD效能,以及DO对处理效能的影响,通过镜检观察反应器内微生物特性,探究反应器同步硝化反硝化脱氮机理。结果表明,反应器维持DO在2.5 mg/L左右时,对粪便污水中氨氮、TN和COD的去除率分别达99.8%、84.1%和95.5%,在好氧曝气生物流化床反应器中,实现同步硝化反硝化脱氮并去除有机物。分析认为,反硝化脱氮主要发生在生物膜内的厌氧微环境,反硝化反应主要由厌氧反硝化菌完成,曝气生物流化床反应器同步硝化反硝化脱氮机理主要从微环境理论解释。  相似文献   

17.
采用牡蛎壳为曝气生物滤池填料,以含NaCl的生活污水为处理对象,在SBR操作条件下,系统考察进水NaCl浓度、曝气时间及进水pH值等对硝化性能的影响。结果表明,进水NaCl浓度为10~15 g/L时,平均氨氮去除率可稳定在97%以上;较高浓度NaCl对亚硝酸化菌活性影响较弱,对硝酸化菌活性影响较强,特别是在日曝气时间少于12 h时,其出水中亚硝氮的含率大于50%;当进水pH值在6~9变化时,反应器内pH值可稳定在6.5~7.5,硝化性能良好,表明牡蛎壳填料可为硝化反应提供碱度。  相似文献   

18.
硝酸盐对反硝化除磷过程的影响分析   总被引:4,自引:1,他引:3  
在厌氧/缺氧间歇反应器内考察了硝酸盐进水浓度及进水方式对反硝化除磷过程的影响。结果表明:在缺氧阶段,反硝化除磷菌(DPBs)可将硝酸盐转化为亚硝酸盐,当硝酸盐浓度较低时,DPBs以亚硝酸盐为电子受体吸磷。进水COD浓度为220 mg/L,正磷浓度为6.8 mg/L,硝酸盐初始浓度为26 mg/L时,系统达到最佳脱氮除磷效果,期间亚硝酸盐浓度积累至10.71 mg/L。采用连续流投加硝酸盐的方式更利于氮磷的高效去除。  相似文献   

19.
利用反硝化筛选培养基从稳定运行的MFC-AA/O反应器阴极板上分离纯化反硝化细菌,经16S rRNA鉴定后,接种于双室MFC的阴极,测试其产电能力以筛选同步产电反硝化细菌,之后对MFC的运行温度和pH进行优化,最后通过扫描循环伏安曲线分析其产电机理。结果表明:分离获得的一株反硝化菌经鉴定为铜绿假单胞杆菌(Pseudomonas aeruginosa),该菌可实现同步产电脱氮,最高输出电压可达168 mV左右,其脱氮反应的最优pH为7.5,最适温度为30℃;在生物阴极起催化产电反硝化作用的可能是Pseudomonas aeruginosa的分泌物,其作为中介体,可从电极获得电子,完成硝酸盐的还原。上述结果说明,Pseudomonas aeruginosa作为接种MFC生物阴极的纯菌,可以实现同步产电反硝化,为反硝化生物阴极MFC的实际应用奠定基础。  相似文献   

20.
我国华北地区超过80%的地下水受到污染,其中硝酸盐氮的污染日益严重,威胁着人类健康。基于单质铁去除地下水中硝酸盐氮,因伴随氨氮的产生而受限制;生物反硝化脱氮因地下水中碳源不足无法满足脱氮要求。采用自制的微电解化学催化固体颗粒与天然生物质构成耦合生物载体,通过自养与异养反硝化耦合深度脱除地下水中硝酸盐氮,并建立了地下水易位好氧、厌氧深度脱氮新工艺。结果表明:好氧反应器在HRT为12 h、DO为2.0~3.0 mg·L-1的条件下,硝酸盐氮平均去除率≥91.24%;厌氧反应器在HRT为14 h的条件下,硝酸盐氮平均去除率≥96.32%;反应器中微电解化学催化固体颗粒可为自养反硝化菌提供电子,生物质可为微生物提供必要的有限碳源,硝酸盐氮的脱除是自制微电解化学催化固体颗粒与生物膜耦合作用的结果。出水均无亚硝酸盐氮和氨氮积累。此技术可为受污染地下水的修复提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号