首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
研究了UV/Fenton技术对高浓度金属清洗乳化油废水的处理效果,考察了亚铁与双氧水浓度、pH、反应时间和搅拌对COD去除效果的影响。实验结果表明,UV/Fenton技术对高浓度乳化油废水(COD平均浓度为35 000 mg/L)具有较高的去除效果,最佳工艺条件为:亚铁与双氧水浓度分别为2 400 mg/L和6 000 mg/L,pH为3,经过2 h反应,COD可降低至1 050 mg/L,去除率为97%。搅拌会降低COD的去除率。研究表明,UV/Fenton技术对高浓度乳化油废水具有很好的降解效果,且药品消耗较低,为目前此类高浓度有机废水的处理提供了技术参考。  相似文献   

2.
垃圾焚烧发电厂渗滤液生化出水是一种高盐,且含腐殖酸类和水溶性小分子有机物的复杂废水.本研究提出了采用Ca(OH)2预处理,并催化臭氧氧化处理的新工艺路线,对工艺参数和催化过程机理进行了分析.结果表明,Ca(OH)2可以有效地预处理去除生化出水中的腐殖酸类大分子有机物,当其用量为12 g/L时,可使COD的去除率达到70%~75%.Ca(OH)2可强化催化臭氧氧化处理预处理废水中剩余的难降解小分子有机物,其机理可能是及时去除了反应体系中生成的碳酸根离子,其适宜用量为2 g/L废水.当搅拌转速小于600 r/min,进口气相中臭氧浓度小于66.24 mg/L时,增大反应体系搅拌强度和进口臭氧浓度可以强化废水COD的去除速率.该工艺在深度处理垃圾渗滤液生化出水中难降解有机物领域具有较大的应用前景.  相似文献   

3.
电芬顿是一种高级氧化技术,其中电极材料对其处理效果有较为明显的影响。为提高电芬顿系统处理效率,选用泡沫镍电极作为阴极,以H_2O_2浓度为指标,探究了操作条件(p H、电流密度、曝气速率、电极间距)对其催化产H_2O_2性能的影响,并利用苯酚作为模拟污染物研究降解效果。实验结果表明,泡沫镍具备优异的阴极性能,其最佳工作条件为:p H=3,电流密度i=3 m A/cm~2,曝气量10 L/h,电极间距3 cm,在此条件下反应60 min后H_2O_2浓度可达45 mg/L。使用泡沫镍作为阴极降解苯酚废水,研究了Fe~(2+)投加量对去除率的影响。在最佳Fe~(2+)量(40 mg/L)下,反应2 h后苯酚及COD去除率分别达到95%和80%。其降解反应符合准一级动力学方程,表观反应速率常数最大可达5.0×10~(-4)s~(-1)。  相似文献   

4.
考察了海藻酸钠(SA)和聚乙烯醇(PVA)含量对固定化载体性能的影响,并筛选了最优条件制备固定化氨氮降解菌,研究其对氨氮废水的处理效果。当PVA和SA质量分数分别为8.00%、1.00%时,制成的固定化载体抗压性能最好,能够形成丰富的多孔结构。固定化氨氮降解菌在处理氨氮废水前驯化168h,可以恢复较高活性。在固定化氨氮降解菌投加量2%(质量分数)、反应温度30℃、pH 8.01、溶解氧3.0 mg/L的条件下反应60h,氨氮废水中的氨氮质量浓度从最初的3 835.29 mg/L降为82.35mg/L,去除率为97.85%。固定化氨氮降解菌在投加量低于氨氮降解菌的情况下,仍然能实现与之相近的氨氮废水处理效果,证明固定化氨氮降解菌能高效处理高浓度氨氮废水。  相似文献   

5.
共代谢基质对苯酚降解菌XTT-3降酚作用的影响   总被引:1,自引:0,他引:1  
采用驯化的方法从活性污泥中分离到一株苯酚降解菌XTT-3,经16SrDNA鉴定为Sphingobiumsp.。对该菌株进行碳饥饿处理,发现其降解苯酚的能力受到抑制。以只含苯酚的M9培养基为参照,添加0.2g/L酵母膏作为共代谢基质,对XTT-3菌株降解苯酚有较明显的促进作用,36h后苯酚降解率为68%。在含0.2g/L酵母膏的M9培养基中,同时添加20mg/L邻苯二酚,XTT-3降解苯酚作用显著增加,24h后苯酚降解率达75%,苯酚降解速度达0.261mg/min。  相似文献   

6.
双室微生物燃料电池同时去除废水中的苯酚和硝酸盐   总被引:2,自引:1,他引:1  
构建了一种双室微生物燃料电池,以苯酚为阳极燃料,同时去除阴极室的硝酸盐废水。结果表明,在闭合情况下,该微生物燃料电池阳极室的苯酚降解效率达到7.6 mg/(L·h),是开路情况下的2倍;反应开始后的5 d内,闭合系统阴极室硝酸盐降解效率达到4.43 mg/(L·d),是开路情况下的2倍多,表明了该MFC系统可以同时去除废水中2种难降解污染物,并且与传统的生物降解方式相比较,具有更快的降解速率。  相似文献   

7.
腐植酸强化苯酚厌氧发酵降解   总被引:1,自引:0,他引:1  
在无外加电子受体的条件下,首次研究了腐植酸对活性污泥厌氧降解苯酚的影响。研究结果表明,腐植酸Suwannee River Humic Acid Standard(SR-HA)、Leonardite Humic Acid Standard(L-HA)和Pahokee Peat Humic Acid(PP-HA)作为氧化还原介体能够提高苯酚的厌氧发酵降解效率。其中腐植酸PP-HA对苯酚的厌氧降解表现出了最为明显的强化效果,反应进行36 h后,苯酚去除率提高了18.5%。当单独投加的PP-HA浓度在0至100 mg/L范围内,苯酚的厌氧降解效率随着腐植酸浓度增加而逐渐提高,而浓度大于100 mg/L后,腐植酸对苯酚降解效率的促进作用随着PP-HA浓度的增加逐渐减缓。除此之外,当低浓度的蒽醌-2-磺酸钠(AQS)(0.02 m M)和PP-HA(20 mg/L)在反应体系中共存时,相比于无介体存在的对照组,苯酚厌氧降解效率提高了约1.4倍。产物分析结果表明,乙酸和CH4作为苯酚发酵降解的重要产物被检测出来。最后,在氧化还原介体腐植酸的存在下,初步探讨了苯酚厌氧发酵降解的代谢途径。  相似文献   

8.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

9.
利用白云石石灰去除与回收污泥厌氧消化液中氮和磷   总被引:1,自引:0,他引:1  
以白云石石灰为实验材料去除与回收污泥厌氧消化液中的氮磷,通过小试实验研究不同投药固液比S/L、初始pH值、反应温度、搅拌速度及反应时间对去除与回收氮磷效果的影响。实验结果表明,在最佳投药固液比S/L为300mg/L,最佳初始pH值范围为8.5~9.5,反应温度为25.0℃,搅拌速度为150 r/min,反应时间为24 h条件下,氨氮(NH+4-N)和磷(PO3-4-P)的去除率分别为37.26%和89.60%。利用X射线衍射仪(XRD)、扫描电镜(SEM)对沉淀产物进行了表征,通过分析可知沉淀产物中含有磷酸铵镁(MAP),可实现废水中氮磷经济有效的回收。  相似文献   

10.
序批式反应器生物强化处理苯酚废水的研究   总被引:1,自引:0,他引:1  
将4株高效苯酚分解菌湿菌体分3批投加于序批式反应器(SBR),对活性污泥进行生物强化试验,分析活性污泥状态与性能变化,测定生物强化后对苯酚的降解能力.结果表明,随着生物强化过程的进行,沉降性能改善,污泥颗粒化趋势明显;生物强化后,活性污泥对苯酚降解能力、降解速率及对苯酚的耐受性明显提高:苯酚质量浓度为730~960mg/L时,苯酚完全降解时间可由正常的6h缩短至2h;6h内可完全降解苯酚的质量浓度由原来的880mg/L提高到2080mg/L,处理能力提高了1.36倍;当进水苯酚质量浓度增加到2400mg/L时,6h内污泥对苯酚的降解率仍达到60.1%.  相似文献   

11.
PAC混凝沉降法处理陶瓷废水操作条件的优化   总被引:1,自引:1,他引:0  
采用PAC混凝沉降法对陶瓷废水进行处理,考察PAC用量、搅拌强度、搅拌时间、进水pH和沉降时间对处理效果的影响,获得优化的操作条件。实验表明:水样的脱色率、浊度去除率和悬浮物去除率随着PAC用量、搅拌强度、搅拌时间和沉降时间的增大和进水pH的降低而呈现增大的趋势;最佳操作条件为:当废水量小、处理时间充足时,选用PAC用量为12 mg/L、搅拌强度为中速、搅拌时间为10 min、进水pH为6、沉降时间为2 h,此条件下水样的脱色率、浊度去除率和悬浮物去除率分别达到95.6%、95.7%和85.6%;当废水量大、处理时间不充足时,选用PAC用量为60 mg/L,沉降时间为30 min,此条件下水样的脱色率、浊度去除率和悬浮物去除率分别达到94.1%、93.4%和84.4%。证明混凝法对于去除陶瓷废水中的悬浮与胶体颗粒均是有效的。  相似文献   

12.
直接驯化嗜盐菌处理高盐废水的研究   总被引:3,自引:0,他引:3  
从大连旅顺盐场底泥中筛选出适合高盐度的嗜盐菌,在序批式间歇反应器(SBR)中对其进行3.5%(质量分数)盐度的驯化,污泥混合液悬浮固体(MLSS)平均质量浓度达600mg/L。污泥比耗氧速率(SOUR)测量结果显示,内源呼吸阶段污泥SOUR为10.36mg/(g.h),外源呼吸阶段污泥SOUR达到29.09mg/(g.h),表明所筛选的嗜盐菌培养的污泥具有较高活性。利用培养的污泥进行高盐模拟废水处理试验,结果表明,对盐度为3.5%、COD为240~340mg/L的高盐废水,在每周期12h、曝气量0.6L/min、污泥MLSS为600mg/L、污泥龄为18d条件下,COD去除率达95%以上,NH4+-N去除率达61%,TP去除率达55%。改变进水有机负荷对出水COD去除影响不大,该系统耐有机负荷冲击能力较强;盐度负荷的改变对COD的去除影响不大,而NH4+-N去除率有明显变化,在3.5%和5.0%的盐度下,NH4+-N去除率分别为61%和31%。  相似文献   

13.

This investigation aimed to remove phenol from real wastewater (taken from a petrochemical company) by activating peroxy-monosulfate (PMS) using catalysts extracted from pier waste sludge. The physical and chemical properties of the catalyst were evaluated by FE-SEM/EDS, XRD, FTIR, and TGA/DTG tests. The functional groups of O–H, C–H, CO32?, C–H, C–O, N–H, and C–N were identified on the catalyst surface. Also, the crystallinity of the catalyst before and after reaction with petrochemical wastewater was 103.4 nm and 55.8 nm, respectively. Operational parameters of pH (3–9), catalyst dose (0–100 mg/L), phenol concentration (50–250 mg/L), and PMS concentration (0–250 mg/L) were tested to remove phenol. The highest phenol removal rate (94%) was obtained at pH=3, catalyst dose of 80 mg/L, phenol concentration of 50 mg/L, PMS concentration of 150 mg/L, and contact time of 150 min. Phenol decomposition in petrochemical wastewater followed the first-order kinetics (k> 0.008 min?1, R2> 0.94). Changes in pH factor were very effective on phenol removal efficiency, and maximum efficiency (≈83%) was achieved in pH 3. The catalyst stability test was performed for up to five cycles, and phenol removal in the fifth cycle was reduced to 42%. Also, the energy consumption in this study was 77.69 kW h/m3. According to the results, the pier waste sludge catalyst/PMS system is a critical process for eliminating phenol from petrochemical wastewater.

  相似文献   

14.
焦化废水中COD、挥发酚和硫氰化物同步高效去除   总被引:1,自引:0,他引:1  
采用两级膨胀颗粒污泥床(EGSB)反应器在微氧条件下处理焦化废水,考察了该工艺对焦化废水中挥发酚、硫氰化物、氰化物和COD的去除效果。研究结果表明,在进水流量为1 L/h,总水力停留时间(HRT)为24 h的条件下,两级EGSB反应器对COD的去除效果较好。稳定运行时,在进水挥发酚为56.8~185.1 mg/L、硫氰化物为287.1~539.9 mg/L、氰化物为0.17~0.72 mg/L的条件下,系统对其平均去除率分别为99.9%、96.8%和82.6%,出水挥发酚和氰化物均能达到《污水综合排放标准(GB8978-1996)》的一级标准。进水COD浓度在1 084~1 880 mg/L之间,平均去除率为76.9%,出水平均浓度为325 mg/L。  相似文献   

15.
用静态吸附法考察粉末活性炭对水中三烯丙基异氰脲酸酯(CAIC)的吸附行为,采用单因素分析法对活性炭吸附化工废水中TAIC的工艺条件进行研究。实验结果表明,在TAIC模拟废水中,其TAIC初始浓度为800 mg/L,pH为7,在温度为298 K、转速为150 r/min的条件下,当活性炭的投加量达到4.4 g/L,吸附反应时间为50 min时,TAIC的去除效率最高为96.17%;对于实际废水,其TAIC初始浓度为1 500 mg/L,溶液pH为3,在温度为298 K、转速为150 r/min的条件下,当活性炭投加量达到10 g/L,吸附反应时间为2 h时,TAIC的去除效率最高为46.8%。这也是由于实际废水组分复杂,其他有机物存在一定的吸附竞争机制。  相似文献   

16.
采用响应面分析法对聚合氯化铝(PAC)与污泥生产的微生物絮凝剂复配处理涂料废水的过程进行了优化,设定的响应值为COD和色度去除率。实验分别拟合了关于COD去除率和色度去除率的二次模型,根据响应值的分布情况,确定涂料废水的最佳絮凝条件为微生物絮凝剂浓度47 mg/L,PAC浓度39 mg/L,pH为8.2,CaCl2浓度0.38 g/L,搅拌速度210 r/min。最佳絮凝条件下,微生物絮凝剂对涂料废水中COD和色度的去除率分别达到77.6%和68.9%。  相似文献   

17.
采用“分步混凝 化学沉淀”法处理苯乙腈生产过程中排放的高浓度含氰废水 ,对混凝剂种类、用量、pH、搅拌速率等因素对总氰去除效果的影响进行了探讨 ,找到了此方法处理含亚铁氰化物废水的最佳工艺条件。在最佳工艺条件下处理废水 ,出水无色透明 ,总氰降到 1mg/L以下。该方法工艺简单 ,运行费用低 ,处理效果好 ,是一种具有推广价值的新方法  相似文献   

18.
在SBR中利用光合细菌球形红细菌污泥颗粒进行模拟氯苯废水处理的初步研究,结果表明,采用球形红细菌污泥颗粒处理模拟氯苯废水的SBR系统是可行的,其降解氯苯过程符合Monod一级反应动力学方程。当进水氯苯浓度在125~187.5 mg/L变化时,处理效率都能稳定在90.5%~95.6%之间;其最佳工艺条件为反应时间6 h、DO 4.75~5.0 mg/L、沉淀时间1.5 h、污泥颗粒浓度4 000~6 000 mg/L。在污泥颗粒浓度4 000 mg/L、DO 5.0 mg/L、反应时间6 h的最佳条件下,当进水COD为748.1 mg/L、氯苯浓度100 mg/L时,COD的去除率达90.9%,处理后出水COD满足国家一级排放标准要求。  相似文献   

19.

Introduction

Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, methods and results

In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000?mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000?mg/L in mineral medium at 30 ± 2?°C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200?C600 rpm) and aeration (1?C3?vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400?rpm and 1 vvm in only 12?h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9?h of incubation.

Conclusion

Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.  相似文献   

20.
三维电极/电-Fenton法降解苯酚   总被引:1,自引:0,他引:1  
采用电-Fenton耦合三维电极法处理苯酚模拟废水,研究了活性炭作为第三电极的三维电极体系中苯酚的去除效果,重点考察了常温下初始pH值、电流强度、Fe2+浓度等因素对苯酚降解的影响。结果表明:在常温下,曝气速率20 L/min,初始pH=3,电流强度为0.3 A/m2,Fe2+浓度为0.1 mmol/L,反应时间60 min时,废水的苯酚的氧化降解率为91%,COD去除率为64%。在此条件下,三维电极/电-Fenton表现出较强的氧化能力,具有较好的去除效果,可应用于含苯酚废水的处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号