首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
印染RO浓水深度处理及回用   总被引:2,自引:0,他引:2  
采用Fenton-石灰苏打法耦合工艺对某印染厂印染反渗透(RO)浓水进行深度处理。通过实验研究了不同H2O2和Fe2+投加量、p H和反应时间对废水COD去除率的影响,以及不同石灰和碳酸钠投加量对废水硬度的脱除效果,出水回用于染色工段进行染色实验。结果表明,在p H=3.0,Fe2+投加量为1.5 mmol/L,H2O2投加量为3.75 mmol/L,反应时间为45 min,石灰和碳酸钠投加量分别为450 mg/L和1 000 mg/L的条件下,出水COD和硬度的去除率可分别达到73.9%和85.0%,耦合工艺出水水质符合该厂回用染色水标准,且减少了盐的使用,可实现印染RO浓水回用。  相似文献   

2.
为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As 2、pH=4~6时,溶液中砷浓度降到了0.5 mg·L~(-1)以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As=3、pH=6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L~(-1)。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。  相似文献   

3.
硫酸钛混凝去除无机砷(Ⅲ)的效能   总被引:1,自引:0,他引:1  
使用硫酸钛作为混凝剂,研究了混凝去除As(Ⅲ)过程中溶液pH值、混凝剂投加量、砷的初始浓度以及阴离子对除砷效果的影响.硫酸钛的水解沉淀物颗粒等电点为pH =5;当pH =6时,水解沉淀物的粒径最大.在pH =5 ~8范围内,As(Ⅲ)的去除率高且基本稳定;而沉淀物颗粒Zeta电位降低较大.说明水解沉淀物Zeta电位对As(Ⅲ)的去除影响不大.混凝剂投加量为2.5 ~10 mg/L时,As (Ⅲ)的去除率随投加量的增加而显著增加;混凝剂投加量大于15 mg/L时,As(Ⅲ)去除率随混凝剂投加量的增加变化趋于平缓.水中阴离子(硅酸根和磷酸根离子)的存在会降低混凝对As (Ⅲ)的去除效率.  相似文献   

4.
混凝沉淀法处理含砷选矿废水   总被引:1,自引:0,他引:1  
某钨矿含砷选矿废水砷含量高且砷以As(V)为主要存在形态,采用混凝沉淀法处理,详细考察了生石灰、硫酸亚铁和六水三氯化铁3种混凝剂对废水中砷的去除效果。实验结果表明,在PAM投加量40 mg/L,静沉时间60 min条件下,比较分析3种混凝剂对砷的去除效果,三氯化铁为最佳除砷混凝剂。三氯化铁最佳除砷工艺条件为:pH 7.5,三氯化铁投加量986.67 mg/L,混凝反应时间25 min,PAM投加量为40 mg/L,静沉60 min,含砷选矿废水经该工艺处理后,砷去除率可达99.14%,出水砷浓度降至0.361 mg/L,达到国家污水综合排放标准(GB8978-1996)。  相似文献   

5.
研究了在超声波、Fenton不同体系中邻苯二甲酸二甲酯(DMP)和壬基酚(NP)的降解效果.通过正交实验得到超声波/Fenton工艺各个因素影响程度的大小为:H2O2投加量>初始pH>反应时间>Fe2+投加量>超声功率.最后得到降解250mL质量浓度为100 μg/L的DMP的最佳条件:H2 O2投加量为2 mmol/L、Fe2+投加量为0.40 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到85.96%;降解250mL质量浓度为100 μg/L的NP的最佳条件:H2O2投加量为4mmol/L、Fe2+投加量为0.50 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到78.70%.  相似文献   

6.
采用UV/Fenton法对橡胶促进剂废水进行预处理.当原水COD约为3000 mg/L时,COD去除率可达65%以上,并得到最佳操作条件为:H2O2投加量为8 mL/L,Fe2 投加量为0.8 g/L,反应时间为30 min,pH=5;同时得到Fenton试剂处理该废水的最佳条件为:H2O2投加量为10 mL/L,Fe2 投加量为0.966 g/L,反应时间为30 min,pH=5;单独UV作用的最佳工艺条件为:反应时间为20 min,pH=5;并就3种处理方法进行了比较,发现UV对Fenton试剂处理橡胶促进剂废水具有一定促进作用.反应前后的紫外光谱说明,经UV/Fenton或Fenton反应后原水中的苯胺、硝基苯等物质已得到了彻底的氧化分解.  相似文献   

7.
采用Fe/C微电解耦合H_2O_2工艺对经复合混凝处理后的某页岩气井钻井废水进行处理,考察了Fe/C质量比、Fe/C投加量、溶液pH值、气水比、H_2O_2(30%)投加量和反应时间对COD去除率的影响。结果表明,耦合工艺最佳实验条件为Fe/C质量比1∶1、Fe/C投加量500 g·L-1、溶液pH值2.5、气水比20∶1、H_2O_2(30%)投加量6 m L·L-1、反应时间120 min。最佳工艺条件下,页岩气钻井废水经处理后,出水COD质量浓度为89.54 mg·L~(-1),去除率达到81.60%。  相似文献   

8.
本实验采用光-Fenton法处理电镀添加剂生产废水,探讨了反应时间、H2O2投加量、FeSO4.7H2O投加量、pH、草酸投加量和TiO2等因素对COD去除效果的影响。结果表明,光-Fenton法对COD的降解率达到了94.3%。并得出该方法的最佳操作条件:反应时间为60 min,pH=4,H2O2投加量为80 mL/L,FeSO4.7H2O投加量为6 g/L,Fe2+和H2O2的摩尔比为1∶36,草酸的投加量为12 g/L,TiO2投加量为1.0 g/L。  相似文献   

9.
采用H2O2/Fe0、H2O2/Fe2+、H2O2/Fe3+3种体系分别对印染废水进行处理,研究pH值、H2O2投加量、不同价态铁元素的投加量及反应时间对印染废水的COD和色度处理效果的影响。实验最佳的处理条件:H2O2/Fe0体系在pH为3.0,Fe0投加量为3.0 mmol/L,H2O2投加量为9.0 m L/L,反应时间为40 min时,COD去除率达到95.99%,色度去除率达到100%;H2O2/Fe3+体系在pH为3.0,Fe3+投加量为5.0 mmol/L,H2O2投加量为12.5 m L/L,反应时间为100 min时,COD去除率达到95.89%,色度去除率达到100%;H2O2/Fe2+体系在pH为3.0,Fe2+投加量为6.0 mmol/L,H2O2投加量为12.0m L/L,反应时间为100 min时,COD去除率达到95.85%,色度去除率达到100%。对比分析3种体系在各因素下的处理结果,H2O2/Fe0体系和H2O2/Fe3+体系都要优于H2O2/Fe2+体系,其中H2O2/Fe0体系的处理效果最好。  相似文献   

10.
采用浸渍—焙烧法制备了CuO/C-Al2O3催化剂,以H2O2为氧化剂,考察催化剂投加量、氧化剂投加量、pH、温度和反应时间等因素对印染废水中色度和COD去除效果的影响。结果表明,利用CuO/C-Al2O3可有效提高H2O2对印染废水的处理效果,COD的去除率可达到82%,色度的去除率可达到98%;本试验装置最佳的处理条件为反应温度60℃、pH 4、H2O2投加量80 mL/L、催化剂投加量40g/L、反应时间60min。  相似文献   

11.
石灰沉淀法除砷的影响因素   总被引:4,自引:1,他引:3  
以Ca(OH)2溶液为沉淀剂,处理模拟含砷废水砷酸钠溶液,考察了pH值、Ca/As摩尔比、自由沉降时间和反应温度等因素对石灰沉淀法除砷效果的影响。结果表明,在pH值为12,Ca/As摩尔比为6,沉降时间为48 h,反应温度为25℃时,石灰沉淀法除砷的效率可达到99.05%;此外,对高浓度的含砷废水,在石灰沉淀法除砷工艺中添加简单无机盐絮凝工艺,可显著降低出水总砷浓度,达到污水综合排放标准的要求。  相似文献   

12.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

13.
Iron oxide-loaded slag for arsenic removal from aqueous system   总被引:5,自引:0,他引:5  
Zhang FS  Itoh H 《Chemosphere》2005,60(3):319-325
An effective adsorbent for arsenic removal from aqueous system was synthesized by loading iron(III) oxide on municipal solid waste incinerator melted slag. The loading was accomplished via chemical processes and thermal coating technique. The key point of the technique was the simultaneous generation of amorphous FeOOH sol and silica sol in-situ and eventually led to the formation of Fe-Si surface complexes which combined the iron oxide with the melted slag tightly. The surface morphology of the iron oxide-loaded slag was examined and the loading mechanisms were discussed in detail. The adsorbent was effective for both arsenate and arsenite removal and its removal capabilities for As(V) and As(III) were 2.5 and 3 times of those of FeOOH, respectively. Both affinity adsorption and chemical reactions contributed to arsenic removal. The effects of solution pH, contact time, arsenic concentration and adsorbent dosage on arsenic removal were examined and the optimum removal conditions were established. Furthermore, leaching of hazardous elements such as Cr(VI), As, Se, Cd and Pb from the adsorbent at a pH range of 2.5-12.5 was below the regulation values. Accordingly, it is believed that the iron oxide-loaded slag developed in this study is environmentally acceptable and industrially applicable for wastewater treatment.  相似文献   

14.
This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg(-1) of As and 66.2 g kg(-1) of iron (Fe). The characteristic of the waste was identified by acid digestion, X-ray diffraction and sequential extraction procedures. Less than 2% of the total As was acid extractable with the remaining 98% associated with Fe-oxyhydroxides and oxides. Batch leaching tests at different pH conditions showed a strong pH dependence on arsenic and iron leaching. Arsenic leaching followed a "V" shaped profiles with significant leaching in the acidic and alkaline pH region. Acid extractable phases dissolved at acidic pH, while desorption of arsenic due to increase in pH resulted in high arsenic concentration at alkaline pH. Under aerobic conditions and pH 7, As solubility was low, probably due to its precipitation on Fe-oxyhydroxides. Maximum As solubilization occurred at pH 11 (3.59 mg l(-1)). Similarity in the As and Fe leaching profiles suggested that the release of As was related to the dissolution of Fe in the low pH region. In general, redox potential did not play a significant role in arsenic or iron solubilization. It was thus concluded that for this solid waste, desorption was the predominant mechanism in arsenic leaching. A simple thermodynamic model based on arsenic and iron redox reactions was developed to identify the more sensitive redox couple.  相似文献   

15.
Removal of arsenic from water by electrocoagulation   总被引:16,自引:0,他引:16  
In the present study electrocoagulation (EC) has been evaluated as a treatment technology for arsenite [As(III)] and arsenate [As(V)] removal from water. Laboratory scale experiments were conducted with three electrode materials namely, iron, aluminum and titanium to assess their efficiency. Arsenic removal obtained was highest with iron electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 microgl(-1) with iron electrodes. Current density was varied from 0.65 to 1.53 mAcm(-2) and it was observed that higher current density achieved rapid arsenic removal. Experimental results at different current densities indicated that arsenic removal was normalized with respect to total charge passed and therefore charge density has been used to compare the results. Effect of pH on arsenic removal was not significant in the pH range 6-8. Comparative evaluation of As(III) and As(V) removal by chemical coagulation (with ferric chloride) and electrocoagulation has been done. The comparison revealed that EC has better removal efficiency for As(III), whereas As(V) removal by both processes was nearly same. The removal mechanism of As(III) by EC seems to be oxidation of As(III) to As(V) and subsequent removal by adsorption/complexation with metal hydroxides generated in the process.  相似文献   

16.
以正交设计方法为基础,以COD去除率为指标,确定了聚硅铝铁硼(PSAFB)最优制备条件,研究了Fenton-PSAFB混凝法处理城市生活垃圾压滤液的最优反应条件和处理效果。结果表明:以200 mL生活垃圾压滤液为处理对象,复合絮凝剂PSAFB的最优制备工艺条件为:Al/Si为1/2,Fe/Si为1/2,B/Si为1/6;其最优反应条件为:pH值为5.0,投加量为200 mg/L(以SiO2计);Fenton法最优反应条件为:pH值为3.0,30%H2O2为20 mL,1 mol/L FeSO4为30 mL;采用最优反应条件的Fenton-PSAFB处理垃圾压滤液,浊度去除率达到95.2%,COD去除率达到84.2%,BOD5去除率达到81.5%。  相似文献   

17.

Introduction  

The nano-scale zero-valent iron (NZVI) was used for the removal of arsenite (As(III)) and arsenate (As(V)) in aqueous solution. Batch experiments were conducted to investigate the effects of initial pH, initial arsenic concentration, dissolved oxygen (DO), and ratio of As(III)/As(V) on arsenic removal.  相似文献   

18.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

19.
实验发现,铁氧化物或铁的羟基氧化物对As(V)有较好的吸附性能,而锆氧化物或锆水合氧化物则对As(Ⅲ)有优异的吸附选择性,但其使用的pH通常要在〉9的条件下。通过简单的共沉淀法制备了Zr-Fe双组分复合吸附剂,在制备过程中通过优化制备条件如:沉淀剂浓度、金属离子总浓度、金属离子配比、反应温度、反应时间及吸附剂价格等因素,最终合成出了对As(V)和As(Ⅲ)都具有良好吸附能力的吸附剂。这种吸附剂在中性条件下对As(V)和As(Ⅲ)的最大吸附量为62mg/g和118mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号