首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 microm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 microg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 microg/m3. The highest PM10 level occurred during the winter period (November-February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydrocarbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 microm.  相似文献   

2.
Hydrocarbon deposition and soil microflora as affected by highway traffic.   总被引:3,自引:0,他引:3  
The proximity of a busy highway (90,000 vehicles/day) increased the amount of polycyclic aromatic hydrocarbons (PAHs) in soil at the depth of 5-15 cm from 106 ng/g as a grassland background to 3095 ng/g dry soil at the highway verge (a sum of 10 PAH species). The PAH concentration was related to the distance from the source and exhibited a biphasic character, which is interpreted in terms of bimodal distribution of the exhaust microparticles with different rates of deposition. Similarly, the tendency of benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene to decrease their proportion with distance from the highway, in contrast to phenanthrene, fluoranthene, pyrene, benzo(a)pyrene, and benzo(g,h,i)perylene, was attributed to their prevalent localisation on the heavier particle fraction. The abundance of bacteria (8.33 x background) and fungi (3.17 x background) close to the highway is thought to be a consequence of hydrocarbon deposition from the traffic that serves as a significant energetic input into the soil. The elevated concentrations of hydrocarbon substrates, as indicated by PAHs, increased both the absolute and relative numbers of the microbial degraders of diesel fuel, biphenyl, naphthalene, and pyrene. Their maximum numbers at 0.5-1.5 m from the pavement reached 1.3 x 10(4), 1.2 x 10(5), 1.1 x 10(4), and 6.6 x 10(3) colony-forming units (CFU) or infection units per gramme dry soil, respectively. On the other hand, the number of anthracene degraders (1.1 x 10(3) CFU per g dry soil) remained close to the detection limit of the enumeration technique used (0.1-0.2 x 10(3) per g dry soil), consistently with the absence of anthracene and higher linear PAHs in the investigated soil samples. The amounts of persisting PAHs justify artificial inoculation with effective degrader strains in the vicinity of motorways.  相似文献   

3.
Abstract

Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 µm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 µg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 µg/m3. The highest PM10 level occurred during the winter period (November–February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydro-carbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 µm.  相似文献   

4.
Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-beta-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0x10(-6)-1.0x10(-3)mM for benzo[a]pyrene and 6.0x10(-6)-1.2x10(-3)mM for pyrene in 10mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9x10(-6) and 5.4x10(-6)mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-beta-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil.  相似文献   

5.
The purpose of this study was to characterize size distributions of atmospheric polycyclic aromatic hydrocarbons (PAHs) with 4–6 rings at the roadside in Ho Chi Minh City, Vietnam. Ten PAHs (fluoranthene, pyrene, triphenylene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) in atmospheric particulate matters (PM) at the roadside were measured in the dry and rainy seasons in 2005 at Ho Chi Minh City, using a low-pressure cascade impactor. The PM were separated into nine fractions by their aerodynamic diameter, i.e. >9.0, 9.0–5.8, 5.8–4.7, 4.7–3.3, 3.3–2.1, 2.1–1.1, 1.1–0.7, 0.7–0.4 and <0.4 μm (a final filter). PAHs were analyzed by high-performance liquid chromatography with fluorescence detection. Total PAHs measured were higher in the rainy season than in the dry season. The mass of coarse particles occupied a higher fraction than that of fine particles in both seasons. Total PAHs were mainly concentrated in particles with aerodynamic diameter smaller than 0.4 μm. The particle size distributions of PAHs investigated were bi-modal with a peak in fine particle mode (<2.1 μm) and another peak in coarse particle mode (>2.1 μm). Generally, 5,6-ring PAHs associated mainly with fine particles and 4-ring PAHs spread out in both fine and coarse particles.  相似文献   

6.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

7.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

8.
From 1995 to 2004, in Genoa, Italy, daily concentrations of twelve polycyclic aromatic hydrocarbons (PAHs) were measured in particulate phase (PM10), around a coke oven plant in operation from the 1950s and closed in 2002. The study permitted to identify the coke oven as the main PAH source in Genoa, causing constant exceeding of benzo(a)pyrene (BaP) air quality target (1.0 ng/m3) in the urban area till 1,900 meters distance downwind the plant. For this reason the plant was closed. Distance and daily hours downwind the coke plant were the main sources of variability of toxic BaP equivalent (BaPeq) concentrations and equations that best fitted these variables were experimentally obtained. During full plant activity, annual average BaPeq concentrations, measured in the three sampling sites aligned downwind to the summer prevalent winds, were: 85 ng/m3 at 40 m (site 2, industrial area), 13.2 ng/m3 at 300 m (site 3, residential area) and 5.6 ng/m3 at 575 m (site 4, residential area).

Soon after the coke oven's closure (February 2002) BaPeq concentrations (annual average) measured in residential area, decreased drastically: 0.2 ng/m3 at site 3, 0.4 ng/m3 at site 4. Comparing 1998 and 2003 data, BaPeq concentrations decreased 97.6% in site 3 and 92.8% in site 4.

Samples collected at site 3, during the longest downwind conditions, provided a reliable PAH profile of fugitive coke oven emissions. This profile was significantly different from the PAH profile, contemporary found at site 5, near the traffic flow.

This study demonstrates that risk assessment based only on distance of residences from a coke plant can be heavily inaccurate and confirmed that seasonal variability of BaPeq concentrations and high variability of fugitive emissions of PAHs during coke oven activities require at least one year of frequent and constant monitoring (10-15 samples each month).

Implications: Around a coking plant, polycyclic aromatic hydrocarbons (PAHs), concentrations depend mainly on downwind hours and distance. Equations that best fit these variables were experimentally calculated. Fugitive emissions of an old coke oven did not comply with the threshold BAP air concentration proposed by the World Health Organization (WHO), up to 1,900 m distance. The study identified the PAH profile of fugitive emissions of a coke oven, statistically different from the profile of traffic emissions. During its activity, in the Genoa residential area, 575 m away from the plant, 92.8% of found PAHs was due to coke oven emission only.  相似文献   

9.
Polycyclic aromatic hydrocarbons in the sediments of the South China Sea   总被引:22,自引:0,他引:22  
Sixteen sediment samples, collected from the South China Sea, were analyzed for 11 parent polycyclic aromatic hydrocarbons (PAHs) using gas chromatography and gas chromatography-mass spectrometry. Total concentrations of the 11 PAHs studied in the sediments ranged from 24.7 to 275.4 ng/g with a mean of 145.9 ng/g dry sediment. PAH concentrations displayed a consistent distribution trend with the sediment organic carbon content. The linear regression analysis showed that the total concentration of PAHs in the sediment was significantly correlated to the sediment organic carbon content with a correlation coefficient of 0.735 (n=16). Special PAH compound ratios, such as phenanthrene/anthracene and fluoranthene/pyrene, were calculated to evaluate the relative importance of different origins. The collected data showed that pyrolytic input from anthropogenic combustion processes was predominant at almost all the stations investigated. Only one station, located in the proximity of oil wells, appeared to be contaminated predominantly by petrogenic input. Three anthropogenic PAHs, i.e. pyrene, benzo[a]pyrene and benzo[e]pyrene, exhibited similar distribution patterns in the studied area, implying that these compounds possess identical sources. However, perylene did not entirely follow the distribution trend of the three PAHs, suggesting that the sediment perylene probably derived from other sources such as in situ biogenic origins. Dibenzothiophene, a sulfur heterocyclic aromatic compound, was also measured in this study.  相似文献   

10.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

11.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

12.
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.  相似文献   

13.
Concentrations of 22 polycyclic aromatic hydrocarbons (PAHs) were estimated for individual particle-size distributions at the airport apron of the Taipei International Airport, Taiwan, on 48 days in July, September, October, and December of 2011. In total, 672 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI. Particle-bound PAHs (P-PAHs) were analyzed by gas chromatography with mass selective detector (GC/MSD). The five most abundant species of P-PAHs on all sampling days were naphthalene (NaP), phenanthrene (PA), fluoranthene (FL), acenaphthene (AcP), and pyrene (Pyr). Total P-PAHs concentrations were 152.21, 184.83, and 188.94 ng/m3 in summer, autumn, and winter, respectively. On average, the most abundant fractions of benzo[a]pyrene equivalent concentration (BaPeq) in different molecular weights were high-weight PAHs (79.29 %), followed by medium-weight PAHs (11.57 %) and low-weight PAHs (9.14 %). The mean BaPeq concentrations were 1.25 and 0.94 (ng/m3) in ultrafine particles (<0.1 μm) and nano-particles (<0.032 μm), respectively. The percentages of total BaPeq in nano- and ultrafine particulate size ranges were 52.4 % and 70.15 %, respectively.  相似文献   

14.
Concentrations of PAHs and PCDD/Fs were measured throughout one year, and PCBs during the second semester, at a rural site in a natural park representative of background pollution in central Italy; results were compared with simultaneous measurements performed at an urban site in Rome 60km away. Twenty-four daily samples were collected at each site by a high-volume PM(10) sampler from February 2000 to January 2001. After ultrasonic extraction and clean-up by TLC, samples were analysed by GC-MS. Mean concentrations of benzo[a]pyrene (BaP, as a marker of carcinogenic PAHs), summation operatorPCDD/Fs and summation operator64 PCBs in Rome were, respectively: 1.1ngm(-3), 65fgWHO-TEQm(-3), 553pgm(-3). The background concentrations were, respectively: 0.016ngm(-3), 3fgWHO-TEQm(-3), and 94pgm(-3). Hence, BaP, and the other PAHs, showed the highest urban-background gradient (two orders of magnitude) and PCBs the lowest. The background pollution levels of BaP and PCDD/Fs were in agreement with the few available background/remote measurements in Europe. In Rome PAHs and PCBs, but not PCDD/Fs, were clearly seasonal; the PCDD/F TEQ was moderately correlated with BaP (P<0.001). At the background site, the seasonality of PAHs was less marked, while it could not be assessed for PCDD/Fs and PCBs. The PCB TEQ accounted for 4% and 15% of total (PCDD/Fs+PCBs) TEQ at the urban and background site, respectively. Mean PM(10) concentration was 54microgm(-3) in Rome and 15microgm(-3) at the background site.  相似文献   

15.
Profiles of PAH emission from steel and iron industries   总被引:5,自引:0,他引:5  
Yang HH  Lai SO  Hsieh LT  Hsueh HJ  Chi TW 《Chemosphere》2002,48(10):3777-1074
In order to characterize the polycyclic aromatic hydrocarbons (PAHs) emission from steel and iron industries, this study measured the stack emission of twelve steel and iron plants in southern Taiwan to construct a set of source fingerprints. The study sampled the emissions by the USEPA's sampling method 5 with the modification of Graseby for the gas and particulate phase PAH and, then, used Hewlett-Packard 5890 gas chromatograph equipped with mass spectrometer detector to analyze the samples. The steel and iron industries are classified into three categories on the basis of auxiliary energy source: Category I uses coal as fuel, Category II uses heavy oil as fuel and Category III uses electric arc furnace. The pollution source profiles are obtained by averaging the ratios of individual PAH concentrations to the total concentration of 21 PAHs and total particulate matter measured in this study. Results of the study show that low molecular weight PAHs are predominant in gas plus particulate phase for all three categories. For particulate phase PAHs, however, the contribution of large molecular weight compounds increases. Two-ring PAHs account for the majority of the mass, varying from 84% to 92% with an average of 89%. The mass fractions of 3-, 4-, 5-, 6-ring PAHs in Category I are found to be more than those of the other two categories. The mass of Category III is dominated by 7-ring PAHs. Large (or heavy) molecular weight PAHs (HMW PAHs) are carcinogenic. Over all categories, these compounds are less than 1% of the total-PAH mass on the average. The indicatory PAHs are benz[a]anthracene, benzo[k]fluoranthene, benzo[ghi]perylene for Category I, benzo[a]pyrene, acenaphthene, acenaphthylene for Category II and coronene, pyrene, benzo[b]chrycene for Category III. The indicatory PAHs among categories are very different. Thus, dividing steel and iron industry into categories by auxiliary fuel is to increase the precision of estimation by a receptor model. Average total-PAH emission factors for coal, heavy oil and electric arc furnace were 4050 μg/kg-coal, 5750 μg/l-oil, 2620 μg/kW h, respectively. Carcinogenic benzo[a]pyrene for gas plus particulate phase was 2.0 g/kg-coal, 2.4 μg/l-oil and 1.4 μg/kW h for Category I, II and III, respectively.  相似文献   

16.
Daily PM2.5 samples, Hg0 and speciated polycyclic aromatic hydrocarbon (PAH) were simultaneously collected at Potsdam and Stockton site in NY during the summers of 2000 and 2001. Samples for determination of the mass concentration and chemical composition of the PM2.5 were obtained with a speciation network PM2.5 sampler. Chemical composition including trace elemental composition, water-soluble ions, and elemental carbon were analyzed. Elemental mercury and PAHs were sampled separately. Daily PM2.5 concentrations ranged from 0.47 to 53.7 microg m(-3) at the Potsdam site, and from 0.82 to 47.23 microg m(-3) at the Stockton site with large daily differences between the two sites. Potsdam consistently had lower mass values than Stockton. The greatest contributors to the PM2.5 mass (generally >0.1 microg/m(3)) were sulfate, nitrate, ammonium, and BC at both sites. Seventeen PAHs were identified at each site in 2000 and the average total concentrations were 3.2 ng/m(3) and 2.9 ng/m(3) at the Potsdam and Stockton sites, respectively. The mean vapor phase mercury concentration at the Potsdam site (2.4 +/-1.2 ng m(-3), n=93) was higher than that at the Stockton site (1.2 +/- 1.0 ng m(-3), n=60) in 2000, whereas in 2001, the average concentrations were 1.1 ng m(-3) and 1.6 ng m(-3) at the Potsdam and Stockton sites, respectively. In general, vapor phase mercury concentrations increased with increasing ambient temperature at the Stockton site in 2000. These differences in values between 2000 and 2001 can be largely explained by distinct differences in the meteorological regimes that dominated in the different years.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) in air were measured in a municipality where sugarcane plantations are extensive, at three sites, one in the city center and two in rural localities. Twenty-four-hour sampling was done using PS1 PUF samplers from Andersen Instruments Inc., at least 1 day per month per site, from June 2009 to October 2009. The chemical analyses were performed by gas chromatography–mass spectrometry (GC/MS) for the 16 most toxic PAHs. The incremental lifetime cancer risk (ILTR) by inhalation was determined by the Monte Carlo method for the urban population using Crystal Ball software. The total concentration of the 16 PAHs at all sites varied from 6.2 to 65.7 ng m?3, with an average of 25.9 ± 18.2 ng m?3. The average concentrations per site were 14.1 ± 13.0 ng m?3 at rural site B, 20.7 ± 11.5 ng m?3 at rural site A, and 36.1 ± 22.7 ng m?3 at the central site. The cancer risk for infants, children, and adults was approximately 14%, 25%, and 61% of the total IRLT, respectively. The mean (95% upper probability limit [95% UPL]) values were 1.2 × 10?7 (2.2 × 10?7) for infants, 2.2 × 10?7 (4.1 × 10?7) for children, and 8.9 × 10?7 (1.1 × 10?6) for adults. Although the three most abundant PAHs found were phenanthrene, fluoranthene, and pyrene, the three most important contributions to the incremental risk of cancer came from benzo[a]pyrene, benzo[b]fluoranthene, and naphthalene. Compared with the risks in big cities such as São Paulo, this would be low, but not negligible. Analysis of ratios of PAHs according to the literature showed that vehicle exhaust and biomass burning, including sugarcane burning, seem to be the most important contributors to PAH concentrations in the central area of Araraquara City.
Implications:The growth of biofuel use worldwide, especially ethanol, together with preharvesting burning practice, is cause of concern with regard to possible health effects, due to increased air pollution levels in cities in regions where sugarcane plantation and processing are intensive. This paper shows that the risk of cancer from PAH inhalation in an urban area surrounded by sugarcane agriculture was of the same order of magnitude as the tolerable risk value of 10?6. As other classical and hazardous pollutants are also present, care should be taken to keep pollution as low as possible to protect human health.  相似文献   

18.
The analysis of the 16 polyaromatic hydrocarbons (PAHs) listed as priority pollutants by EPA, was carried out on surface sediments at 32 stations at Todos Santos Bay, Baja California, Mexico. The purpose was to investigate concentration levels, distribution patterns and relate them to three suspected local sources. The PAHs composition of car exhaust, grass and shrubs combustion, and asphalt and tire dust, were all compared to the relative abundance of PAHs signature found on marine sediments of the bay. We used GC-MS analysis in selected ion monitoring (SIM) mode. The total concentration found was low (from 7.6 to 813 ng/g of dry sediment. The average concentration was 96 ng/g). PAHs concentration was somewhat correlated (r = 0.612; P < 0.05) with organic matter content. Surface distributions suggest depositional patterns conforming to the reported water circulation in the bay. The maximum concentration was found near Todos Santos Canyon. The largest concentrations found were those of fluoranthene (120.6 ng/g), Indene(1,2,3-c,d)pyrene (115.6 ng/g) and pyrene (109.9 ng/g). Percentagewise, the main components were PAHs with three and four rings. Several indexes were used to investigate origins including simple PAH ratios and ternary plots. These indexes and plots suggest the main origin as a combination of urban air and wood and brush fires with little influence of oil.  相似文献   

19.
Zhu L  Wang J 《Chemosphere》2003,50(5):611-618
Twelve polycyclic aromatic hydrocarbons, multi-ringed compounds known to be carcinogenic in air of six domestic kitchens and four commercial kitchens of China were measured in 1999-2000. The mean concentration of total PAHs in commercial kitchens was 17 microg/m3, consisting mainly of 3- and 4-ring PAHs, and 7.6 microg/m3 in domestic kitchens, where 2- and 3-ring PAHs were predominant, especially naphthalene. The BaP levels in domestic kitchens were 0.0061-0.024 microg/m3 and 0.15- 0.44 microg/m3 in commercial kitchens. Conventional Chinese cooking methods were responsible for such heavy PAHs pollution. The comparative study for PAH levels in air during three different cooking practices: boiling, broiling and frying were conducted. It was found that boiling produced the least levels of PAHs. For fish, a low-fat food, frying it produced a larger amount of PAHs compared to broiling practice, except pyrene and anthracene. In commercial kitchens, PAHs came from two sources, cooking practice and oil-fumes, however the cooking practice had a more predominant contribution to PAHs in commercial kitchen air. In domestic kitchens, except for cooking practice and oil-fumes, there were other PAHs sources, such as smoking and other human activities in the domestic houses, where 3-4 ring PAHs mainly came from cooking practice. Naphthalene (NA, 2-ring PAHs) was the most predominant kind, mostly resulting from the evaporation of mothball containing a large quantity of NA, used to prevent clothes against moth. A fingerprint of oil-fumes was the abundance of 3-ring PAHs. Heating at the same temperature, the PAHs concentrations in different oil-fumes were lard > soybean oil > rape-seed oil. An increase in cooking temperature increased the levels of PAHs, especially acenaphthene.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号