首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
地下水中轻质有机污染物(LNAPL)透镜体研究   总被引:10,自引:0,他引:10  
在二维砂槽模型中模拟了轻质油在均匀多孔介质地下水非饱和区中的运移过程。模拟结果表明,地下水毛细区是轻质油污染的重点区,除了LNAPL的残留以外,进入地下水饱和的LNAPL终将被地下水顶托回到毛细区中,毛细区以上的约大多民将在重力作用下进入毛细区中,试验中观察到达稳定状态时LNAPL透镜体的上边缘略微高出毛细区。利用多孔介质毛细管模型,建立了利用界面张力、接触角、介质特征孔隙直径等物理量估算不同位置  相似文献   

2.
建立了地下水环境中甲基叔丁基醚(MTBE)运移过程的变系数动力学模型,并对模型进行了验证和参数灵敏度分析.模拟结果表明,地下水流速和阻滞系数对于MTBE的运移过程影响最为显著,而水动力弥散系数的影响较小,忽略其变化不会对预测地下水环境中污染物运移的环境动力学行为造成太大误差.由此得到的结论可定量研究MTBE在地下水环境中的对流.扩散特征,还可为MTBE污染地下水的预测预报、修复治理等研究提供科学依据.  相似文献   

3.
非饱和土壤渗透系数空间不确定性对溶质运移的影响   总被引:1,自引:0,他引:1  
包气带渗透系数的不确定性是影响非饱和带溶质运移的主要因素。应用贝叶斯方法对非饱和土壤渗透系数进行前处理,使用Monte-Carlo方法模拟其空间不确定性,并通过HYDRUS-1D模型对溶质运移进行数值模拟,研究包气带渗透系数的空间不确定性对溶质运移的影响。结果表明,由于包气带渗透性的不确定性使得溶质浓度分布呈现明显的不确定性,包气带内不同点的浓度值相差很大。与忽略包气带土性参数空间不确定性的模拟结果相对比,考虑包气带渗透系数不确定性的模拟结果与实际情况更加接近,更具合理性和科学性。同时,根据模拟结果,对实际工作中进行地下水数值模拟时溶质初始浓度输入值的确定提出相应建议。  相似文献   

4.
数值模拟已成为目前地下水有机污染现场中,预测和评价溶解相有机污染物运移的主要手段.自从MT3D问世以来,它在地下水溶质运移的模拟中得到了广泛的应用.MT3D中包含有4种不同的数值算法--MOC,MMOC,HMOC和UFDM.利用Processing MODFLOW Pro.7.0.5建立了均质一维流动的地下水数学模型,考虑溶解相有机污染物在地下水中运移时的4个主要影响因素--对流、弥散、吸附和降解,设定了14种代表性的情形,模拟了等浓度污染源条件下污染物的运移,并将不同数值算法的计算结果与理论解进行比较,从而研究不同数值算法的优缺点,为实际数值模拟时算法的选择提供依据.  相似文献   

5.
基于水泥可潜入河道淤积基质,并可在基质内堆积和凝聚的机理,通过室内土柱积水入渗实验,揭示水泥潜入河床基质阻塞基质孔隙,削减地面水中污染物进入地下水的作用与规律。结果表明,水泥潜入河床基质,对砂壤土质河道淤泥含镉污水中重金属镉累积运移量有抑制作用,且抑制效果显著;水泥潜入砂壤土质河道淤泥对含镉污水中重金属镉浓度也有一定程度的减少作用,减少程度相对明显。该结果可以为抑制河道污染物通过地表向地下水迁移提供技术支撑,同时,为地下水环境污染治理工程选择有效、省时、低成本措施提供理论依据。  相似文献   

6.
以北京市某农田用地地下水监测井为研究对象,基于农田水文地质参数建立了地下水多目标模拟优化模型。结合Monte Carlo分析法分析了地下水水流模型和溶质运移模型参数的不确定性,并求解了单口监测井的影响半径,最后借助NSGA-II算法建立了两个目标函数之间的权衡关系。模型求解结果表明,监测系统可靠性目标最大为76.8%,对应的监测井数量最小为3口;当扩大污染羽的控制边界时,可以建立4口监测井。研究结果表明,模拟优化模型可以用于地下水监测井布井优化当中,建立两个目标函数之间合理的权衡关系,确定监测井的数量和位置,保证监测系统的可靠性。  相似文献   

7.
利用淋容试验,模拟自然降雨,分析了煤矸石对高速公路沿线地下水造成的污染,获得了大量真实可靠的数据,得出了煤矸石淋溶液中无机盐是造成高速公路沿线地下水污染的主要原因.并基于多孔介质流体力学和溶质运移动力学建立了描述微量元素在土壤-水环境系统中迁移的数学模型,利用该模型对煤矸石淋溶微量元素在道路沿线土壤-水环境中的迁移规律进行了模拟分析,进一步预测了污染物浓度变化规律及分布特征,可为公路沿线土壤-水环境污染提供分析依据.  相似文献   

8.
为改善转运站点的作业环境,以转运站部分结构为模拟对象,根据实体结构模型建立流场模型,采用realiza-ble k-epsilon气相湍流模型及拉格朗日颗粒轨道模型对结构内的两相流运动情况进行了数值模拟,得到了流体相的压力分布和速度分布以及固相的粉尘颗粒轨迹,讨论了导料槽中挡帘对流场的影响.结果表明,挡帘对导料槽中流场特征影响明显,在配置了挡帘的导料槽中,流场压力分布更有序,空气流动更集中,可产生一定的回流气体来降低来流气体的速度,且会在内部形成局部高速区域.  相似文献   

9.
为分析参数不确定性对填埋场渗漏风险评估结果的影响,构建了填埋场地下水污染风险评价的物理过程模型,在此基础上,分别采用模糊理论和概率理论刻画模糊不确定性参数和随机不确定性参数,同时采用基于随机理论的Monte Carlo方法模拟模糊不确定参数,最终构建了基于模糊随机耦合的填埋场地下水污染风险评价方法。采用该模型对东北某一般工业固废填埋场进行案例研究,结果表明,实测浓度在模型模拟的的浓度区间(10%~90%分位值浓度)之内。说明本模型构建的模糊-随机耦合的地下水污染风险评价模型能较准确地预测地下水中污染物实际浓度,可以用于填埋场地下水污染风险评价.风险评估结果表明,该填埋场地下水的潜在污染物为As和Mn,其中As为主要健康风险物质,其非致癌风险值超过风险可接受水平的概率为22%,致癌风险超过10-4的概率为33%,超过10-5的概率为86%,应该采取措施控制含As填埋废物中As的溶出,降低其环境风险;Mn的非致癌风险值小于风险可接受水平的概率为100%,无风险。  相似文献   

10.
涕灭威在土壤中残留与移动行为的动态模拟   总被引:3,自引:0,他引:3  
详细描述了模拟涕灭威在土壤中残留与移动的计算机模型,并应用试验地区的土壤资料、气象资料、作物耕作资料以及涕灭威农药的理化性质与使用情况进行了模拟计算,结果表明与试验地区的实测结果相吻合,即在试验区的环境条件下,涕灭威在土层中的最大淋溶度不超过60cm棉田施用涕灭威不会造成对地下水的污染.因此可以用该模型来模拟涕灭威在其他地区土壤中的行为和对地下水的影响.  相似文献   

11.
Sources of contamination of groundwater are often difficult to characterize. However, it is essential for effective remediation of polluted groundwater resources. This study demonstrates an application of the linked simulation-optimization based methodology to estimate the release history from spatially distributed sources of pollution at an illustrative abandoned mine-site. In linked simulation-optimization approaches a numerical groundwater flow and transport simulation model is linked to the optimization model. In this study, topographic and geologic characteristics of the abandoned mine-site were simulated using a three-dimensional (3D) numerical groundwater flow model. Transport of contaminant in the groundwater was simulated using a 3D transient advective-dispersive contaminant transport model. Adsorption or chemical reaction of the contaminant was not considered in the contaminant transport model. Adaptive simulated annealing (ASA) was employed for solving the optimization problem. An optimization algorithm generates the candidate solutions corresponding to various unknown groundwater source characteristics. The candidate solutions are used as input in the numerical groundwater transport simulation model to generate the concentration of pollutant in the study area. This information is used to calculate the objective function value, which is utilized by the optimization algorithm to improve the candidate solution. This process continues until an optimal solution is obtained. Optimal solutions obtained in this study show that the linked simulation-optimization based methodology is potentially applicable for the characterization of spatially distributed pollutant sources, typically present at abandoned mine-sites.  相似文献   

12.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

13.
Contamination of groundwater constrains its uses and poses a serious threat to the environment. Once groundwater is contaminated, the cleanup may be difficult and expensive. Identification of unknown pollution sources is the first step toward adopting any remediation strategy. The proposed methodology exploits the capability of a universal function approximation by a feed-forward multilayer artificial neural network (ANN) to identify the sources in terms of its location, magnitudes, and duration of activity. The back-propagation algorithm is utilized for training the ANN to identify the source characteristics based on simulated concentration data at specified observation locations in the aquifer. Uniform random generation and the Latin hypercube sampling method of random generation are used to generate temporal varying source fluxes. These source fluxes are used in groundwater flow and the transport simulation model to generate necessary data for the ANN model-building processes. Breakthrough curves obtained for the specified pollution scenario are characterized by different methods. The characterized breakthrough curves parameters serve as inputs to ANN model. Unknown pollution source characteristics are outputs for ANN model. Experimentation is also performed with different number of training and testing patterns. In addition, the effects of measurement errors in concentration measurements values are used to show the robustness of ANN based methodology for source identification in case of erroneous data.  相似文献   

14.
The enhanced solubility of petroleum-derived compounds in humic acid solutions is the basis for a new groundwater remediation technology. In this unique pilot-scale test, a stationary contaminant source consisting of diesel fuel was placed below the water table in a model sand aquifer (1.2 x 5.5 x 1.8-m deep) and flushed with water at a flow rate of 2 cm/h over 5 years. At 51 days, laboratory grade humic acid was added to the water and maintained at a level of approximately 0.8 g/l. The addition of humic acid had only a small impact on the aqueous transport of the BTEX components, which were rapidly dissolved from the diesel, but had a large effect on the flushing of PAHs, including methylated naphthalenes (MNs). Binding to aqueous humic acid enhanced the solubilization of MNs two- to tenfold. During aqueous transport, biodegradation of the BTEX and PAHs occurred, limiting the lateral and longitudinal extent of the diesel contaminant plume in the model aquifer. It appears that through enhanced solubilization, the overall biodegradation rate of the MNs was increased. As the various MNs were depleted from the diesel source, the MN plume shrank and then disappeared.  相似文献   

15.
The Balcova Geothermal Field (BGF) located in Izmir, Turkey is situated on an east-west directed graben plain within which the hot waters surface from a fault zone that cuts the Mesozoic aged Bornova Flysch. Due to the low permeability and porosity of the Bornova Flysch, the geothermal water cycles along the immediate vicinity of the Agamemnon fault and mixes with cold waters at different depths of this fractured zone. Within the scope of this study, the mixing patterns and the groundwater contamination mechanisms are analyzed by, hydrogeological and hydrogeochemical methods. Based on the results of this research, it has been found out that the hot geothermal water and the cold regional groundwater resources of the surficial aquifer mix within the fractured zone in Bornova Flysch and within the Quaternary alluvium aquifer due to natural and anthropogenic activities including (i) the natural upward movement of geothermal fluid along the fault line, (ii) the accelerated upward seepage of geothermal fluid from faulty constructed boreholes drilled in the area, (iii) the faulty reinjection applications; and, (iv) the uncontrolled discharge of waste geothermal fluid to the natural drainage network. As a result of these activities, the cold groundwater reserves of the alluvial aquifer are contaminated thermally and chemically in such a way that various toxic chemicals including arsenic, antimony and boron are introduced to the heavily used surficial aquifer waters hindering their use for human consumption and agricultural irrigation. Furthermore, the excessive pumping from the surficial aquifer as well as the reduced surface water inflow into BGF due to the dam constructed on Ilica Creek intensify the detrimental effects of this contamination. Based on the results of this study, it can be concluded that the groundwater pollution in BGF will expand and reach to the levels of no return unless a series of preventive measures is taken immediately.  相似文献   

16.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature.  相似文献   

17.

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92?×?10?10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.

  相似文献   

18.
Numerical experiments of non-reactive and reactive transport were carried out to quantify the influence of a seasonally varying, transient flow field on transport and natural attenuation at a hydrocarbon-contaminated field site. Different numerical schemes for solving advective transport were compared to assess their capability to model low transversal dispersivities in transient flow fields. For the field site, it is shown that vertical plume spreading is largely inhibited, particularly if sorption is taken into account. For the reactive simulations, a biodegradation reaction module for the geochemical transport model PHT3D was developed. Results of the reactive transport simulations show that under the site-specific conditions the temporal variations in groundwater flow do, to a modest extent, affect average biodegradation rates and average total (dissolved) contaminant mass in the aquifer. The model simulations demonstrate that the seasonal variability in groundwater flow only results in significantly enhanced biodegradation rates when a differential sorption of electron donor (toluene) and electron acceptor (sulfate) is assumed.  相似文献   

19.
Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO3 ? and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.  相似文献   

20.
In this study, mathematical modelling of the total nitrogen contamination transport in a porous medium was evaluated in order to determine the potential groundwater pollution caused by a sugar factory in the Eskisehir region of Turkey. Analytical solutions of mathematical modelling were performed to show graphically the distributions of contaminant concentrations. Multiflow computer programming was used to determine the distribution of contaminant concentrations with respect to time and distance. The distribution distance of contaminant concentrations was determined at any time interval. From this study, the potential pollution of groundwater can be effectively estimated. Prediction of pollution by means of the model will help to form the future predictions of water resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号