首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
草甘膦农药生产废水农业利用研究   总被引:3,自引:0,他引:3  
草甘膦[(HO)_2(?)CH_2 NHCH_2 COOH]是一种高效、低毒、广谱、安全的有机磷芽后除草剂,广泛应用于农、林、牧、园艺等领域。在草甘膦生产过程中,排出大量高浓度含氮废水(每生产1吨草甘膦,排放4吨左右废水),使水体富营养化,严重污染环境,目前国内尚无十分理想的处理方案。从草甘膦生产工艺分析,该废水主要成份为氯化铵和少量甘氨酸,不含其他有毒物质(见表1)。  相似文献   

2.
结合草甘膦的性质及其生产废水的特性,论述了草甘膦生产废水的适宜处理技术.采用厌氧折流板反应器(ABR),对取自上海某草甘膦生产厂家的废水进行实验室规模的处理研究,结果表明,具有高的CODcr去除率.据此提出了可行的处理工艺方案.  相似文献   

3.
以聚醚砜(PES)超滤膜为基膜,采用涂层法制备磺化聚醚醚酮(SPEEK)中空纤维复合纳滤膜,研究其对草甘膦的浓缩和去除。考察了该膜在浓缩草甘膦模拟废水中的操作条件,如跨膜压力、进料浓度、进料pH和离子强度等对通量和截留率的影响。结果表明,随跨膜压力的增加,草甘膦的截留率和水通量均增加,当跨膜压力由0.3 MPa增加到0.8 MPa时,水通量由34.0 L/(m2.h)增加至98.0 L/(m2·h),截留率高于98%;增加进料浓度和离子强度,截留率和通量均减小,当进料浓度由100 mg/L增至1 000 mg/L,水通量降低12.4%,截留率降低8.4%;而pH由3.0升至11.0时,截留率增加,但通量几乎不变。当把该膜材料用于浓缩含高浓度NaCl的草甘膦母液时,发现在0.5 MPa压力和pH=11.0下,复合纳滤膜对NaCl的截留率低于20%,对草甘膦的截留率可达90%。这说明该复合纳滤膜可以把草甘膦与NaCl有效分离开来,为草甘膦的回收利用提供了基础。  相似文献   

4.
张红健  潘王 《污染防治技术》2003,16(Z2):203-204
草甘膦是目前国内外通用的一种高效、低毒、低残留的除草剂.通过对草甘膦生产工艺中主要产生污染物的双甘膦工段的改造,用三氯化磷一次合成双甘膦,可提高反应转化率,降低物料消耗,减少废水排放,达到实现减污增效的目的.  相似文献   

5.
为研究草甘膦纳滤分离过程的影响因素及变化规律,选用GE Osmonic的DK膜对草甘膦模拟废水进行纳滤分离过程的研究。实验表明,20℃、浓度500 mg/L、pH=2.96的草甘膦模拟废水,其截留率随跨膜压力升高而略有升高,其渗透通量随跨膜压力的升高几乎线性增加;随操作温度升高渗透通量增加,但截留率下降;渗透通量和截留率均随料液初始浓度的增加而降低;在pH值为3~5的范围内,草甘膦的截留率随pH值升高而下降,在膜的等电点附近达到最低,该pH值范围内渗透通量在膜的等电点附近较高;在pH值为5~11的范围内,草甘膦的截留率随pH值升高而升高,在该pH值范围内渗透通量随pH值升高而降低;由于屏蔽效应,草甘膦的截留率随NaCl浓度的升高而降低。  相似文献   

6.
活性炭负载水合氧化铁对草甘膦吸附性能的研究   总被引:3,自引:1,他引:2  
利用活性炭制备了水合氧化铁负载活性炭AC-Fe,并通过静态吸附实验研究了该材料对水溶液中草甘膦的吸附性能。研究结果表明,该负载方法可以在活性炭上嫁接72 mg/g的铁,AC-Fe对草甘膦的最大吸附容量可以达到120 mg/g;AC-Fe对草甘膦的吸附量随pH的升高而降低;磷酸根对AC-Fe的吸附性能具有明显的抑制作用,原因在于它能和铁离子形成内层络合物,与草甘膦竞争材料表面的吸附位点。  相似文献   

7.
以有机磷农药-草甘膦为目标污染物,利用光电芬顿方法对其进行降解研究。研究汇总考察了电流强度、初始p H、Fe2+浓度、草甘膦初始浓度、光种类及通入背景气体种类对草甘膦降解效果的影响。实验结果表明:电流强度越大,草甘膦初始浓度越低,草甘膦降解效果越好;草甘膦在p H=2.0~3.0的酸性体系中降解效果最好;Fe2+浓度升高,草甘膦降解效果增强。在电流为0.36 A、初始p H=3.0、Fe2+浓度为1.0 mmol·L~(-1)、通入100 m L·min-1O2条件下,以365 nm紫外光照射的光电芬顿反应降解初始浓度为84.5 mg·L~(-1)的草甘膦溶液,处理360 min后溶液矿化率可达64.5%。  相似文献   

8.
MnO_2/Al_2O_3吸附草甘膦及微波紫外耦合降解再生工艺   总被引:1,自引:0,他引:1  
以掺混煅烧法制备Mn O2/Al2O3,并对草甘膦进行吸附,将吸附态草甘膦置于微波紫外耦合系统中进行降解和再生。研究并给出了Mn O2/Al2O3的最佳制备条件、最佳吸附条件和微波紫外耦合降解再生的最佳工艺参数。Mn O2/Al2O3最佳制备条件为Mn O2质量分数15%,煅烧温度500℃,煅烧时间2 h。在常温下,Mn O2/Al2O3对草甘膦的最大吸附量为75 mg/g。微波紫外耦合系统最佳工艺参数为功率500 W,时间25 min,空气量0.06 m3/h。在此操作条件下,Mn O2/Al2O3的再生率达到85%,并且可以多次再生利用,草甘膦最终降解产物为二氧化碳、氮氧化物、磷酸和水,矿化率为65%。  相似文献   

9.
氧化、还原改性对活性炭吸附草甘膦的影响   总被引:1,自引:0,他引:1  
研究了氧化、还原改性对活性炭吸附草甘膦的影响.以傅立叶红外光谱定性表面官能团变化,以扫描电镜观察表面形貌,以化学吸附分析仪测定后再通过测定样品的氮气吸附/脱附等温线计算比表面积和孔径.结果表明:(1)氧化改性使活性炭比表面积增大;还原改性使活性炭比表面积减小.还原阶段使先前氧化阶段中产生的孔道以及原有孔道均发生塌陷,导致还原改性活性炭比表面积减小.(2)在静态吸附的条件下,氧化改性和还原改性活性炭对草甘膦的吸附均为吸热反应.还原改性在活性炭表面产生的还原性官能团有利于活性炭对草甘膦的吸附,而氧化改性产生的氧化性官能团并不利于活性炭对草甘膦的吸附.(3)热力学参数的计算进一步表明,改性活性炭对草甘膦的吸附为吸热反应.  相似文献   

10.
采集内蒙霍林河煤矿褐煤样品,加工成粒径0.38~0.83 mm作为吸附剂,对模拟草甘膦废水进行动态吸附实验。考察了吸附柱高(3、5和10 cm)、草甘膦初始浓度(0.5%、0.75%和1.0%)、流速(1、2和3 m L/min)、pH(9、11和13)和离子强度(IS,0.001、0.01和0.1 mol/L)对草甘膦的吸附穿透曲线和传质区长度的影响。实验结果表明,降低柱高、增大初始浓度、提高流速、增加离子强度均会使穿透时间提前,pH变化对穿透时间影响很小;柱高、初始浓度、流速、IS和pH引起的传质区长度的平均变化率绝对值分别为0.675、6.300、1.625、47.727和0.263,可见,与柱高、初始浓度和流速相比,IS对传质区长度的影响较大,pH影响较小。低浓度条件下,吸附穿透曲线的实验数据符合BDST模型拟合条件(R20.99),在仅改变柱高或流速时,穿透时间理论值与实测值的最大误差均为5.71%,运用该模型能够准确地预测褐煤吸附柱的操作时间。  相似文献   

11.
H. Kylin 《Chemosphere》2013,90(6):1821-1828
Environmental monitoring of pesticide residues in surface water is often done with time-integrated sampling where a specified volume is sampled each hour during, e.g., a week, thus avoiding at momentary high or low extreme concentrations. However, sampling over an extended period of time can result in losses of easily degradable analytes, why the stability of the target analytes over the timespan of the sampling must be checked. Glyphosate is one of the most widely used herbicides. Because of its chemical complexity, glyphosate binds differently to metals and colloids at different pH, and the degradation may also be affected. Recovery of glyphosate from spiked natural waters after 1 and 3 weeks of storage was higher when the samples were acidified to approximately pH 2 rather than at their natural pH. Keeping the samples refrigerated to 4 °C in darkness also enhanced recovery, while glyphosate losses were substantial from samples kept at their natural pH at 20 °C. Total loss of glyphosate was observed in some samples kept at natural pH, 20 °C, and daylight; a loss partly due to binding to metals or colloids that could only partially be reversed by acidification. For 1-week time-integrated sampling a small amount of hydrochloric acid in a piece of heat-sealed hydrophobic micro-porous tubing is added to the sampling bottles before deployment, a procedure that acidifies the samples during collection keeping them below pH 2 until analysis, thus minimising losses of glyphosate. The method also allows determination of the primary degradation product aminomethylphosphonic acid (AMPA).  相似文献   

12.
Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 μM could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure.  相似文献   

13.
Glyphosate is an herbicide used widely and increasingly since the early 1990s in production of many crops and in urban areas. However, knowledge on the transport of glyphosate and its degradation to aminomethylphosphonic acid (AMPA) in ecosystems receiving urban or agricultural runoff is lacking. Here we show that transport and attenuation of runoff-associated glyphosate and AMPA in a stormwater wetland differ and largely vary over time. Dissolved concentrations and loads of glyphosate and AMPA in a wetland receiving runoff from a vineyard catchment were assessed during three consecutive seasons of glyphosate use (March to June 2009, 2010 and 2011). The load removal of glyphosate and AMPA by the wetland gradually varied yearly from 75% to 99%. However, glyphosate and AMPA were not detected in the wetland sediment, which emphasises that sorption on the wetland vegetation, which increased over time, and biodegradation were prevailing attenuation processes. The relative load of AMPA as a percentage of total glyphosate increased in the wetland and ranged from 0% to 100%, which indicates the variability of glyphosate degradation via the AMPA pathway. Our results demonstrate that transport and degradation of glyphosate in stormwater wetlands can largely change over time, mainly depending on the characteristics of the runoff event and the wetland vegetation. We anticipate our results to be a starting point for considering degradation products of runoff-associated pesticides during their transfer in wetlands, in particular when using stormwater wetlands as a management practice targeting pesticide attenuation.  相似文献   

14.
Hydrated iron oxide supported on resin (D301) was prepared as a new sorbent for the removal of glyphosate from wastewater. Batch adsorption studies were performed on glyphosate aqueous solutions with different initial glyphosate concentrations and temperatures. Experimental data were analyzed using the Langmuir and Freundlich isotherms, and the adsorption data were best fit to the Langmuir isotherm model. The thermodynamic parameters AG, AH, and AS also were calculated for the adsorption processes. Adsorption rate constants were determined using the pseudo-first-order and pseudo-second-order rate equations and Kannan-Sundaram intraparticle diffusion models. Adsorption of glyphosate clearly followed the pseudo-second-order model and was controlled by both film diffusion and intraparticle diffusion.  相似文献   

15.
Zhou DM  Wang YJ  Cang L  Hao XZ  Luo XS 《Chemosphere》2004,57(10):1237-1244
Glyphosate [N-(phosphonomethyl)glycine] (GPS; H3G) is a widely used pesticide throughout the world. It affects metal behaviors in soil-plant system due to its functional groups, which react with metal ions to form metal complexes. Adsorption and cosorption of cadmium and glyphosate on a Wushan soil (WS soil, Anthrosol) and a Zhuanhong soil (ZH soil, Udic Ferrisol) as affect by solution pH were studied by means of batch adsorption experiments. It indicated that the adsorption quantity of Cd or glyphosate was highly relevant to soil characteristics. The WS soil had higher adsorption capacity of Cd than the ZH soil, due to its high organic matter content and cation exchange capacity (CEC). In contrast, the adsorption quantity of glyphosate on the WS soil was less than that on the ZH soil, because the WS soil has lower iron and aluminum oxides content but higher pH than the ZH soil. The herbicide glyphosate affected Cd adsorption on the two soils when they coexisted in a same soil solution, which was attributed to a glyphosate-induced pH-decrease and the corresponding decline in negative surface charges of the soil. Beside that, glyphosate reacted with solution Cd to form the water-soluble complexes that had lower affinity to soil surface in comparison with Cd itself. On the other hand, the presence of Cd in the soil solution also affected the adsorption of glyphosate on the soils. The presence of Cd increased adsorption quantity of glyphosate on the WS and ZH soils, which was resulted from the decrease of equilibrium solution pH caused by Cd2+ exchange with H+ ions of soil surface. In addition to that, glyphosate adsorption possibly takes place on sites where Cd was previously adsorbed and acted as a bridge between the soil and glyphosate.  相似文献   

16.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT50 values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, 14C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 ± 0.002% and 0.005 ± 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

17.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

18.
The present work involves the photocatalytic mineralization of glyphosate on a plug flow reactor by UV/TiO(2). The effect of catalyst loading shows an optimal value (0.4 g L(-1)) which is necessary to mineralize glyphosate. The kinetic rate of glyphosate mineralization decreases with the increasing initial concentration of glyphosate, and the data can be described using the first-order model. An alkaline environment is conducive to glyphosate mineralization. The mineralization efficiency increases with elevated flow rate to 114 mL min(-1), which is followed by a decrease with a further increase in flow rate due to the reduction of the residence time. The presence of external oxidants (K(2)S(2)O(8), H(2)O(2) and KBrO(3)) and photosencitizer (humic acid) can significantly enhance glyphosate mineralization. Photocatalysis oxidation ability of the three studied oxidants decrease in the order of: S(2)O(8)(2-) > BrO(3)(-) > H(2)O(2). Finally, the Langmuir-Hinshelwood (L-H) model was used to rationalize the mechanisms of reactions occurring on TiO(2) surfaces and L-H model constants were also determined.  相似文献   

19.
Biodiversity within European semi-natural biotopes in agro-ecosystem is declining, and herbicide drift from neighbouring fields is considered as an important factor for the decline. The aim of the present study was to investigate whether the growth and competitive interactions in a model system of two perennial grass species, Festuca ovina and Agrostis capillaris, are affected by sub-lethal doses of glyphosate in field margins. In a glasshouse experiment with ample nitrogen, the interspecific competitive interactions were found to be significantly affected by glyphosate; the competitive effect of F. ovina on A. capillaris increased and the competitive effect of A. capillaris on F. ovina decreased with increasing doses of glyphosate. Furthermore, the importance of interspecific competition increased with the glyphosate dose. The results of the study of competitive interactions are in agreement with the observed plant community dynamics at the field site where F. ovina was found to be more dominant in plots treated with a relatively high dose of glyphosate. Importantly, the effects of glyphosate on the plant community dynamics critically depended on the effect of glyphosate on the plant competitive interactions. The study concludes that the current practice in the environmental risk assessment of non-target effects of herbicides, where single species are tested in the greenhouse, may be inadequate for assessing the effect of herbicides in semi-natural plant communities. The presented methods can be used for assessing the importance of competitive interactions for the sensitivity of non-target plants to herbicides in risk assessment.  相似文献   

20.
The survival of autochthonous fungi in soil treated with 1mM aqueous solution of glyphosate was investigated. Significant differences in the total number of fungi in the studied objects were observed, and additionally significant qualitative changes were encountered. The dominating group of fungi belonged to genus Fusarium: Fusarium solani H30, Fusarium solani H50 and Fusarium oxysporum H80. Interactions between the isolated strains of fungi and varying concentrations of glyphosate were determined. The studied strains possessed high tolerance against the applied doses of glyphosate (0.5-2.0 mM). In the presence of glyphosate (as a sole source of phosphorus) applied in concentrations of 1.0-1.5 mM the increase in dry mass of the tested fungi was highly significant. In the presence of glyphosate the phenotypic changes of studied strains were observed as was shown as the presence of colorants being indicators of such changes. Thus, their color and intensity depended on the age, pH and species present in the culture. The degradation of glyphosate by studied fungi was determined by means of TLC. Two types of compounds were formed. One of them (Rf=0.21-0.35) contained free amino group but was not either glycine nor AMPA. Survival of Fusarium in soil environment is potentially dangerous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号