首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

2.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

3.
Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB (tPCB) concentrations in air ranged from 0.21 to 4.78 ng m−3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l−1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4′-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m−2 yr−1) was significantly higher than that of pesticides by a factor of 5–10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m−2 yr−1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.  相似文献   

4.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

5.
An annual mean concentration of 40 μg m−3 has been proposed as a limit value within the European Union Air Quality Directives and as a provisional objective within the UK National Air Quality Strategy for 2010 and 2005, respectively. Emissions reduction measures resulting from current national and international policies are likely to deliver significant reductions in emissions of oxides of nitrogen from road traffic in the near future. It is likely that there will still be exceedances of this target value in 2005 and in 2009 if national measures are considered in isolation, particularly at the roadside. It is envisaged that this `policy gap’ will be addressed by implementing local air quality management to reduce concentrations in locations that are at risk of exceeding the objective. Maps of estimated annual mean NO2 concentrations in both urban background and roadside locations are a valuable resource for the development of UK air quality policy and for the identification of locations at which local air quality management measures may be required. Maps of annual mean NO2 concentrations at both background and roadside locations for 1998 have been calculated using modelling methods, which make use of four mathematically straightforward, empirically derived linear relationships. Maps of projected concentrations in 2005 and 2009 have also been calculated using an illustrative emissions scenario. For this emissions scenario, annual mean urban background NO2 concentrations in 2005 are likely to be below 40 μg m−3, in all areas except for inner London, where current national and international policies are expected to lead to concentrations in the range 40–41 μg m−3. Reductions in NOx emissions between 2005 and 2009 are expected to reduce background concentrations to the extent that our modelling results indicate that 40 μg m−3 is unlikely to be exceeded in background locations by 2009. Roadside NO2 concentrations in urban areas in 2005 and 2009 are expected to be significantly higher than in background locations. 21% of urban major road links are expected to have roadside NO2 greater than or equal to 40 μg m−3 in 2005 for our illustrative emissions scenario. The continuing downward trend in traffic emissions is likely to further reduce the number of links exceeding this value by 2009, with about 6% of urban major road links predicted to have concentrations higher than 40 μg m−3. The majority of these links are in the London area. The remaining links are generally confined to the most heavily trafficked roads in other big cities.  相似文献   

6.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

7.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

8.
The present study reports findings on TSP loading in the ambient air of two major cities in Pakistan – Karachi and Islamabad. Data for TSP were collected at one site in Karachi and two in Islamabad between 10 December 1998 and 08 January 1999. This article reports one of the highest TSP loadings recorded so far in any megacity of the world. During the study period, average daily TSP concentrations at the Karachi site ranged from 627 to 938 μg m−3 with a mean of 668 μg m−3. On four occasions TSP concentrations were >1000 μg m−3 (range 1031–1736 μg m−3). At the Islamabad sampling site in close proximity to the city's industrial sector, daily TSP concentrations varied in the range of 428–998 μg m−3 (mean 691 μg m−3). Even at a relatively remote site of the city (Saidpur), TSP loading was high (range 145–448 μg m−3; mean 275 μg m−3). By virtue of the WHO definition, the 24-h average TSP concentrations in a busy commercial site in Karachi and in the vicinity of an industrial sector in Islamabad were in “exceedance” by a factor of 4–8. At Saidpur, the remote site, the 24-h average TSP loading exceeded the WHO guideline of 120 μg m−3 by a factor of 1.2–3.7.  相似文献   

9.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

10.
Two methods for measuring aerosol elemental carbon (EC) are compared. Three-hour integrated carbon samples were collected on quartz filters during the summer of 1990 in Uniontown, PA, primarily during episodes of elevated particulate pollution levels. These samples were analyzed for EC and organic carbon (OC) using a thermo/optical reflectance (TOR) method. Aerosol black carbon (BC) was measured using an Aethalometer, a semi-continuous optical absorption method. The optical attenuation factor for ambient BC was supplied by the instrument manufacturer. Three-hour average concentrations were calculated from the semi-continuous BC measurements to temporally match the EC/OC integrated quartz filter samples. BC and EC concentrations are highly correlated over the study period (R2=0.925). The regression equation is BC (μg m-3)=0.95 (±0.04) EC−0.2 (±0.4). The means of 3 h average measurements for EC and BC are 2.3 and 2.0 μg m-3, respectively, average concentrations of EC and BC ranged from 0.6 to 9.4 and 0.5 to 9.0 μg m-3 respectively. TOR OC and EC concentrations were not highly correlated (R2=0.22). The mean OC/EC ratio was 1.85.The 10-week Aethalometer hourly dataset was analyzed for daily and weekly temporal patterns. A strong diurnal BC pattern was observed, with peaks occurring between 7 a.m. and 9 a.m. local time. This is consistent with the increase in emissions from ground level combustion sources in the morning, coupled with poor dispersion before daytime vertical mixing is established. There was also some indication of a day-of-week effect on BC concentrations, attributed to activity of local ground level anthropogenic sources. Comparison of BC concentrations with co-located measurements of coefficient of haze in a separate field study in Philadelphia, PA, during the summer of 1992 showed good correlation between the two measurements (R2=0.82).  相似文献   

11.
Atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in southeastern Korea during the spring of 2002. During this period, severe Asian dust events (ADs) occurred throughout Korea. Total suspended particulates (TSP) of ADs (456.8 μg m−3) increased approximately 3.6-fold compared with non-Asian dust events (NADs; 128.5 μg m−3). However, the concentrations of PCDD/Fs (average concentration, 3.34 pg m−3) did not increase as much as TSP; there was not a significant difference in the concentrations of particle-bound PCDD/Fs collected between ADs (2.45 pg m−3) and NADs (2.05 pg m−3). Meanwhile, according to TSP levels, the concentrations during NADs were 2.8-fold higher than ADs (16.73 and 5.98 ng g−1-TSP, respectively). High TSP levels during sand storms without an increase in PCDD/Fs reflected an increase in coarse and accumulation mode particles. Gas/particle partitioning studies revealed the additional inputs of particulate matters to the air during ADs which did not relate with the increase of PCDD/Fs. Furthermore, emissions from ADs may consist of relatively complex atmospheric particles; back trajectories showed air masses moving at low altitudes over Korea, but there were no differences in PCDD/Fs or atmospheric pollutants regardless of air movements. The study area, which is located in southeastern Korea, might be affected by both marine and regional anthropogenic sources, which do not appear to cause clear differences in PCDD/F concentrations or congener profiles between different air trajectories.  相似文献   

12.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

13.
Fine particle nitrate concentrations were measured at 10-min intervals for approximately 9.5 months beginning on 14 February 2002, at the Baltimore Supersite Ponca St. location using an R&P 8400N semi-continuous monitor. The measurement results were used to characterize seasonal and shorter-term excursions in nitrate concentrations and determine their influence on PM2.5 concentrations. Over the 9.5-month study period, nitrate levels of 1.7±1.6 μg m−3 accounted for 11.4% of the PM2.5 mass. Monthly averages ranged from 0.8 μg m−3 in August to 2.9 μg m−3 in November, and accounted for 4.7–17.3% of monthly PM2.5 mass. Hourly averages, however, were often larger, especially in the colder months, owing to numerous relatively short-term transients, where hourly nitrate concentrations exceeded 5.0 μg m−3. These often occurred along with NOx and ultrafine particle transients during the morning commute hours.A total of 275 short-term transients (31.7% of the total) exceeding 1.0 μg m−3 were identified. These were associated with one of three sets of conditions. The first, most typical (177, i.e. 64.4% of the 275 incidences), is characterized by high NOx typically between 0500 and 0800EST and is attributed to early morning commute traffic activity. The second type occurred during the afternoon due to photochemical activity. The excursions in the afternoon occurred infrequently (only 9.5% of all the observed transients) during the study period and were characterized by less elevated nitrate concentrations than morning and nighttime transients. The third (72, i.e. 26.2% of the 275 transients) occurred at night, typically between 2000EST and 0200EST.Multiple linear regression analysis between nitrate excursions and volume size distributions indicates that particulate nitrate observed is closely related to the near accumulation (0.1–0.2 μm) and droplet modes (0.5–1.0 μm) in the morning hours, and associated with the droplet (0.5–1.0 μm) and coarse modes (1.0–2.5 μm) for nighttime transients, suggesting that processes governing particulate nitrate formation depend on time-of-day.  相似文献   

14.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

15.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

16.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

17.
The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m−3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m−3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m−3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day−1, respectively. The public concern should pay considerable attention to professional drivers’ health.  相似文献   

18.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

19.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

20.
The present study has been conducted in the frame of BUMA (Prioritization of Building Materials Emissions as indoor pollution sources), a European funded project, aiming at assessing the exposure to emitted compounds in indoor air. Field campaigns in five (5) European cities (Milan, Copenhagen, Dublin, Athens and Nicosia) were carried out. These campaigns covered weekly winter and summer concentration measurements in two (2) public buildings and two (2) private houses in each city. BTEX, terpenes, and carbonyls were measured using passive sampling in two sites inside the building and one outside. VOC emission measurements on selected building material have also been performed using Field and Laboratory Emission Cell (FLEC). The results on indoor concentrations for compounds such as formaldehyde (1.2–62.6 μg m?3), acetaldehyde (0.7–41.6 μg m?3), toluene (0.9–163.5 μg m?3), xylenes (0.2–177.5 μg m?3) and acetone (2.8–308.8 μg m?3) have shown diversity and relatively significant indoor sources depending on the building type, age etc. Indoor concentrations of these substances are varied depending on the building age and type. The percentage of approximately 40% of the indoor air quality levels originated from building materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号