首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Environmental hazards resulting from land application of composted pesticide residue have not been rigorously evaluated. This study was conducted to examine the toxicity of a composted pesticide residue using earthworms (Eisenia foetida Savigny) as a microinvertebrate model in a soil bioassay system. Diazinon, which was used in these experiments as a test pesticide, was removed from simulated rinsate (wastewater) by sorption onto peat moss. Following the rinsate clean-up phase, diazinon-laden peat moss was placed into bioreactors and composted for either 30 or 60 days. Earthworms were then exposed to soil amended with the composted material. Mortality and symptomatic effects characteristic of acetylcholinesterase inhibition, including weight loss, reduced burying ability and curling, occurred in earthworms exposed to soil amended with either uncomposted or 30-day composted diazinon, but not in those exposed to soil amended with 60-day composted diazinon. The amount of solvent-extractable diazinon from compost was not directly related to acute earthworm toxicity based on the selected criteria. These results indicated a reduction in diazinon bioavailability during latter 30 d of composting that did not correspond to a reduction in solvent-extractable diazinon concentrations. Measuring symptomatic effects of xenobiotics as described in this study may increase the sensitivity and diagnostic ability of earthworm bioassays.  相似文献   

2.
A process for disposing of pesticide rinsates using sorption onto organic matter followed by composting is being evaluated. As a part of this evaluation process, we have studied the bioavailability of composted delta-2-14C-diazinon and its degradation products to earthworms (Eisenia foetida Savigny) in 30 and 60 d compost amended soil. After 60 d of composting there was considerable degradation of diazinon (95%) and a corresponding increase in the primary hydrolysis product, 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) as determined by high performance thin layer chromatography (HPTLC). Approximately 50% of the radioactivity became incorporated into the non-extractable fractions associated with composted organic matter with no measurable amounts of 14CO2 produced during the 60-day composting period. Following addition of the composted materials to soil, diazinon leading to 50% mortality after 14 d of exposure; continued to slowly degrade and become increasingly sorbed/entrapped within the soil-compost matrix. Soil amended with 30-d composted diazinon was toxic to earthworms whereas, no mortality was observed in those earthworms exposed to the 60-d composted diazinon. However, earthworms exposed to 30-d and 60-d composted diazinon were found to have similar levels of radioactivity in their tissues. The majority of the radioactivity in earthworms exposed 60-d composted diazinon was either unextractably bound within the earthworm tissue or was not acetone soluble. Most of the radioactivity that could be extracted with acetone was not separated by the two HPTLC methods we used. This study demonstrates that composting high concentrations of diazinon can greatly reduce toxicity and the amount of diazinon that is bioavailable to a representative soil macroinvertebrate (E. foetida).  相似文献   

3.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha?1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

4.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

5.
Zhang JB  Song CC  Yang WY 《Chemosphere》2005,59(11):1703-1705
Cold season (winter and thaw) CH4, CO2 and N2O fluxes from freshwater marshes (47°35′N, 133°31′E, Northeast China) were measured, using the static chamber method. The mean CH4 and CO2 fluxes from Carex lasiocarpa (Cl) were 0.5 ± 0.19 and 6.23 ± 1.36 mg C m−2 h−1, respectively, and those from Deyeuxia angustifoli (Da) were 0.18 ± 0.15 and 5.22 ± 2.48 mg C m−2 h−1, respectively in winter. There was no significant difference between Cl and Da (p > 0.05). The contributions of winter CH4 fluxes were about 5.5% and 3% in the Cl and Da, respectively. Marshes are an important potential N2O sink in winter season in northeast China. During thaw, the CH4 and CO2 emissions rapidly increased, 4.5–6 times of winter emissions. Wetland became a source of N2O. Cold season gases flux from northern wetlands play an important role in the seasonal gas exchange.  相似文献   

6.
Araújo AS  Monteiro RT 《Chemosphere》2006,64(6):1043-1046
This laboratory study examines the effect of application of untreated and composted textile sludge on microbial biomass and activity in a Brazilian soil. The soil was amended with untreated and composted sludge at rates equivalent of 6.4t ha(-1) (0.64 g per 100g of soil) and 19t ha(-1) (1.90 g per 100g of soil), respectively, and were incubated at 28 degrees C for 60 days and daily sampled for microbial activity. An additional experiment, in the same condition, was conduced for evaluation of microbial biomass and enumeration of microorganisms at 15, 30 and 60 days after incubation. The application of composted sludge increased significantly the microbial biomass and activity, and bacteria number of soil. There were not differences in the microbial activity and bacteria number among the control and untreated sludge amended soils. In conclusion, after 2 months of incubation, the effects of the two amendments on soil microorganisms were: microbial biomass, soil respiration and bacteria number were increased only in composted sludge treated soil. qCO2 and fungi number were not affected by untreated and composted sludge.  相似文献   

7.
In situ stabilization of toxic elements in contaminated soils by the addition of amendments is being considered as an effective technique for remediation. In this paper, we performed both kinetics and equilibrium-based sorption experiments of three toxic elements (As, Cd and Tl) in soils amended with two by-products (phosphogypsum and sugar foam, rich in gypsum and calcium carbonate, respectively) to ascertain the feasibility of their application for improving the sorption capacity of As, Cd and Tl from the soil at 25, 35 and 50 °C. Kinetic studies indicated that the sorption follows a pseudo-second-order (PSO) kinetics and the sorption is a two-step diffusion process where both film and intraparticle diffusion played important roles in the sorption mechanisms of the elements. The Langmuir isotherms applied for sorption studies showed that the estimated maximum sorption capacity of the elements in control and amended soils decreased in the order of Cd > As > Tl. Using the thermodynamic equilibrium parameters obtained at different temperatures, the thermodynamic constants of sorption (ΔG, ΔH and ΔS) were also evaluated, indicating spontaneous and endothermic nature of the process, except Tl which was exothermic. An optimal scaling procedure was undertaken to determine the relationships between the kinetic and equilibrium sorption parameters. By means of statistical analysis it was seen that these inter-parametric relationships are dependent on the element nature.  相似文献   

8.
Abstract

A greenhouse experiment was conducted under simulated field conditions using large‐capacity plastic pots, filled each one with 25 kg of air‐dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha‐1) of municipal solid waste (MSW) compost, and co‐composted municipal solid waste and sewage sludge (MSW‐SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW‐SS co‐compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA‐extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc‐EDTA‐extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA‐extractable and AAAc‐EDTA‐extractable Zn contents in soil versus the control, except for the lower rate of MSW‐SS co‐compost. The values of DTPA‐extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc‐EDTA‐extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc‐EDTA‐extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW‐SS co‐compost.  相似文献   

9.
Wang X  Liu X  Wang H  Dong Q 《Chemosphere》2007,67(11):2156-2162
A species of bacteria that is capable of utilizing imazaquin as the sole carbon source was isolated from soil with repeated imazaquin applications, and was identified as Arthrobacter crystallopoietes (designated as strain “WWX-1”). This isolate degrades imazaquin as high as 200 μg ml−1, and the estimated dissipation half-lives increased from 1.51 d for the treatment at 50 μg ml−1 to 4.75 d for 200 μg ml−1. Optimal growth of WWX-1 in mineral salt medium with 50 μg ml−1 imazaquin was obtained at 35 °C and a pH of 5.0. Growth of WWX-1 was also observed in mineral salt medium with the addition of other imidazolinone herbicides such as imazethapyr and imazapyr, but not with different classes of herbicides such as metsulfuron-methyl. Two imazaquin metabolites were detected, and spectral analysis with HPLC–MS, 1H NMR, and IR revealed one metabolite with a molecular weight (MW) of 199 as quinoline-2,3-dicarboxylic anhydride. We propose that A. crystallopoietes (WWX-1) could serve as an efficient biodegradation system for remediation of water and soils that are heavily contaminated with imazaquin or other structurally similar chemicals.  相似文献   

10.
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element.  相似文献   

11.
A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.  相似文献   

12.
Remediation of metal contaminated soil with mineral-amended composts   总被引:10,自引:0,他引:10  
This study examined the use of two composts derived from green waste and sewage sludge, amended with minerals (clinoptilolite or bentonite), for the remediation of metal-contaminated brownfield sites to transform them into greenspace. Soils contaminated with high or low levels of metals were mixed with the mineral-enhanced composts at different ratios and assessed by leaching tests, biomass production and metal accumulation of ryegrass (Lolium perenne L.). The results showed that the green waste compost reduced the leaching of Cd and Zn up to 48% whereas the composted sewage sludge doubled the leachate concentration of Zn. However, the same soil amended with composted sewage sludge showed an efficient reduction in plant concentrations of Cd, Cu, Pb or Zn by up to 80%. The results suggest that metal immobilisation and bioavailability are governed by the formation of complexes between the metals and organic matter. The amendment with minerals had only limited effects.  相似文献   

13.
Rao IG  Singh DK 《Chemosphere》2001,44(8):1691-1695
The binary and tertiary combinations of plant-derived molluscicides Azadirachta indica and Cedrus deodara oil with synergists MGK-264, piperonyl butoxide (PB) and fruit powder of Embelia ribes were used against the Lymnaea acuminata. It was observed that the toxic effects of these mixtures were time- and dose-dependent. The binary and tertiary mixtures of plant-derived molluscicides with synergists were more toxic with respect to the single treatment of the plant-derived molluscicides. Maximum synergistic action in binary and tertiary combinations was found in A. indica + C. deodara oil and A. indica + PB + C. deodara in 1:7 and 1:5:7 ratio, respectively.  相似文献   

14.
Prihoda KR  Coats JR 《Chemosphere》2008,73(7):1102-1107
Transgenic crops expressing insecticidal, crystalline (Cry) Bacillus thuringiensis (Bt) proteins were commercialized in the US in 1996. There is little information in the peer-reviewed literature on the environmental fate of the coleopteran-active Bt Cry3Bb1 protein expressed in event MON863 corn. The exposure characterization of Bt proteins is unique in that the fate of the protein in soil and in crop residue must be considered. To date, the significance of macrodecomposing organisms, such as earthworms, isopods, and springtails, to the dissipation of Bt proteins present in crop residue has not been assessed. In addition, the input of Bt proteins into soil through leaching from post-harvest crop residue has not been examined. Two laboratory microcosm studies were conducted to determine the fate of Bt Cry3Bb1 in decomposing MON863 corn residue and to determine whether Bt proteins can enter soil by leaching from crop residue. In addition, the importance of macrodecomposing organisms to the degradation of Bt proteins in corn residue was assessed. Laboratory microcosms containing MON863 corn leaf, root, and stalk with and without macrodecomposers were used to examine the fate of Bt Cry3Bb1 in post-harvest MON863 corn residue. A half-life of less than five days was found for Bt Cry3Bb1 protein in decomposing MON863 corn residue. There was a trend of increasing half-life of Cry3Bb1 in microcosms containing macrodecomposers, however, this trend was only significant (p<0.05) for Bt Cry3Bb1 in MON863 leaf tissue and this increase is not likely relevant for non-target exposure. The recovery of Bt Cry3Bb1 protein from soil extracts was either below the limit of quantification (9 ng g(-1) soil) or below the limit of detection (0.7 ng mL(-1)) at all time points during the study. Based on the results from this study, Bt protein leaching from post-harvest crop residue is not a significant contributor to Bt protein input into soil.  相似文献   

15.
Freitas H  Prasad MN  Pratas J 《Chemosphere》2004,54(11):1625-1642
In north–east of Portugal, the serpentinized area is about 8000 ha with a characteristic geology and flora. The serpentine plant community and respective soils were analyzed to examine the trace metal budget in different tissues of the plants exhibiting resistance to trace metals. One hundred and thirty five plant species belonging to 39 families and respective soils have been analyzed for total Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Substantial amounts of Ni, Cr, Co and Mn were detected in plant tissues which are listed below: Ni: Alyssum serpyllifolium (38 105); Bromus hordeaceus (1467); Linaria spartea (492); Plantago radicata (140); Lavandula stoechas (118) and Cistus salvifolius (114); Cr: L. spartea (706.7); Ulmus procera (173.4); A. serpyllifolium (129.3); Cistus ladanifer (40.8); L. stoechas (29.5); P. radicata (27.81); Setariopsis verticillata (25.7); Plantago lanceolata (24); Digitalis purpurea (23.4); Logfia minima (23.1); Arenaria querioides (23); Hieracium peleteranum (22.7); Arenaria montana (14.5); Co: A. serpyllifolium (145.1); L. spartea (63.2); P. radicata (10.4); H. peleteranum (7.3); Lepidium heterophyllum (6.9); A. querioides (6.6); C. salvifolius (6.5); C. ladanifer (6.3); L. stoechas (6.1); Anthyllis lotoides (6.1); L. minima (6.1); Euphorbia falcata (5.7) and B. hordeaceus (5.6); Mn: A. serpyllifolium (830); L. spartea (339); L. stoechas (187.1); L. minima (182.7); Castanea sativa (125); Spergula pentandra (124); P. radicata (119); Cytisus striatus (115.4); Quercus pyrenaica (110); Teucrium scorodonia (109.4); Fraxinus vulgaris (109); Anthyllis sampaiana (108); Quercus ilex (108). The significance of serpentine flora, need for conservation of these fragile and environmentally invaluable plant resources for possible use for in situ remediation of metalliferous substrates are presented in this paper.  相似文献   

16.
The soils at a depleted copper mine in Touro (Galicia, Spain) are chemically degraded. In order to determine the effect of amendments and vegetation on the chemical characteristics of a mine soil and on the plant uptake of metals, a greenhouse experiment was carried out for 3 months. A settling pond soil was amended with different percentages of a compost and biochar mixture and vegetated with Brassica juncea L. The results showed that the untreated settling pond soil was polluted by Cu. Amendments and planting mustards decreased the pseudototal concentration of this metal, reduced the extreme soil acidity and increased the soil concentrations of C and TN. Both treatments also decreased the CaCl2-extractable Co, Cu and Ni concentrations. However, the amendments increased the pseudototal concentration of Zn in the soil, provided by the compost that was used. The results also showed that mustards extracted Ni efficiently from soils, suggesting that B. juncea L. is a good phytoextractor of Ni in mine soils.  相似文献   

17.
Amending soils with compost may lead to accumulation of metals and their fractions at various concentrations in the soil profile. The objectives of this study were to determine 1) the accumulation of Cu, Fe, Mn, and Zn with depth and 2) the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each metal in soils amended with MSW compost, co-compost, biosolids compost and inorganic fertilizer (as control). Total concentrations of Cu, Fe, Mn and Zn were concentrated in the 0-22 cm soil layer and scant in the rock layer. These metals were in the decreasing order of Fe > Mn > Zn > or = Cu. Copper, Fe, and Zn were predominantly in the residual form followed by fractions associated with Fe-Mn oxides, carbonate, organic, exchangeable and water soluble in all treatments except MSW compost amended soil where the organic fraction was higher than the carbonate fraction. In fertilizer, co-compost and biosolids compost treated soils Mn concentrated mainly in the Fe-Mn oxides form followed by residual, carbonate, and organic forms whereas, in MSW compost treated soil the same pattern occurred except that Mn organic fraction was higher than that in the carbonate form. The MSW compost has a greater potential to be used as a soil amendment to supply plants with Cu, Mn and Zn than other treatments in calcareous soils of south Florida.  相似文献   

18.
In the terrestrial environment, standardized protocols are available for measuring the exposure and effects of contaminants to invertebrates, but none currently exist for vertebrates. In an effort to address this, we proposed that developing lizard embryos may be used as a terrestrial vertebrate model. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may affect hatchling size, mortality, as well as thyroid function. Toxicant-induced perturbations of thyroid function resulting from in ovo chemical exposure may result in toxicity during the critical perinatal period in reptiles. Fertilized Eastern fence lizard (Sceloporus undulatus) eggs were placed in cadmium (Cd)-spiked expanded perlite (0, 1.48, 14.8, 148, 1480, 14 800 μg Cd/g, nominal concentrations), artificially incubated at 28 °C, and examined daily for mortality. Whole lizard hatchlings as well as failed hatches were homogenized in ethanol and the homogenate was divided for Cd body residue analysis and thyroid hormone (triiodothyronine (T3) and thyroxine (T4)) analyses. Acute mortality was observed in the two highest doses (1480 and 14 800 μg Cd/g). Cadmium body residues showed a higher internal concentration with increasing exposure concentration indicating uptake of Cd. There was a decrease in T3:T4 ratio at the highest surviving dose (148 μg Cd/g), however, there were no differences observed in hatchling size measured as weight and snout-vent length, or in whole body thyroid hormone levels. In summary, this study has shown Cd amended to a solid phase representing soil (perlite) can traverse the thin, parchment-like shell membrane of the fence lizard egg and bioaccumulate in lizard embryos. We believe this study is a good first step in investigating and evaluating this species for use as a model.  相似文献   

19.
Heise J  Höltge S  Schrader S  Kreuzig R 《Chemosphere》2006,65(11):2352-2357
For sulfonamides, the formation of non-extractable residues has been identified by laboratory testing as the most relevant concentration determining process in manured soil. Therefore, the present study has been focused on the chemical and biological characterization of non-extractable residues of 14C-labeled sulfadiazine or sulfamethoxazole. In laboratory batch experiments, the test substances were spiked via standard solution or test slurry to microbially active soil samples. After incubation periods of up to 102 d, a sequential extraction technique was applied. Despite the exhaustive extraction procedure, sulfadiazine residues mainly remained non-extractable, indicating the high affinity to the soil matrix. The remobilization of non-extractable 14C-sulfadiazine residues was monitored in the activated sludge test and the Brassica rapa test. Only small amounts (<3%) were transferred into the extractable fractions and 0.1% was taken up by the plants. In the Lumbricus terrestris test A, the release of non-extractable 14C-sulfamethoxazole residues by the burrowing activity of the earthworms was investigated. The residues mainly remained non-extractable (96%). The L. terrestris test B was designed to study the immobilization of 14C-sulfamethoxazole in soil directly after the test slurry application. The mean uptake by earthworms was 1%. Extractable and non-extractable residues amounted to 5% and 93%, respectively. Consequently, the results of all tests confirmed the high affinity of the non-extractable sulfonamide residues to the soil matrix.  相似文献   

20.
Ryegrass (Lolium perenne) and alfalfa (Medicago sativa) were planted in pots to remediate pyrene contaminated quartz sand (as a control group), alluvial and red soils amended with and without compost. The pyrene degradation percentages in quartz sand, alluvial soil, and red soil amended with compost (5%, w/w) and planted with ryegrass and alfalfa for 90 d growth were 98-99% and 97-99%, respectively, while those of pyrene in the corresponding treatments amended without compost but planted with ryegrass and alfalfa were 91-96% and 58-89%, respectively. Further, those of pyrene in the respective treatments amended with and without compost but unplanted were 54-77% and 51-63%, respectively. Pyrene contents in both roots and aboveground parts of ryegrass and alfalfa after 90 d growth in quartz sand and the two soils amended with or without compost were trace amounts. Statistical analyses for the parameters of ryegrass planted in red and alluvial soils including the concentrations of total water-soluble volatile low molecular weight organic acids, microbial population, pyrene degradation percentage, and spiked pyrene concentration show significant correlations at 5% and mostly 1% probability levels, by the analysis of variance. It was thus suggested that the interactions among the consortia of plant root exudates, microorganisms, and amended compost in rhizosphere soils could facilitate bioavailability of pyrene and subsequently enhance its dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号